
Languages, Automata, Regular
Expressions & Scanners

BCS 307 – Compiler Construction

1/20/2021

Agenda

 Basic concepts of formal languages and grammars

 Regular expressions

 Lexical specification of programming languages

 Using finite automata to recognize regular expressions

 Scanners and Tokens

2

1/20/2021

Programming Language specifications

 Since the 1960s, the syntax of every significant programming language has

been specified by a formal grammar

 First done in 1959 with BNF (Backus-Naur Form) used to specify ALGOL 60 syntax

3

1/20/2021

Grammar for a Tiny Language

program ::= statement | program statement

statement ::= assignStmt | ifStmt

assignStmt ::= id = expr ;

 ifStmt ::= if (expr) statement

expr ::= id | int | expr + expr

 id ::= a | b | c | i | j | k | n | x | y | z

 int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

4

1/20/2021

Productions

 The rules of a grammar are called productions

 Rules contain:

 Nonterminal symbols: grammar variables (program, statement, id,
etc.)

 Terminal symbols: concrete syntax that appears in programs (a, b, c,
0, 1, if, (,), …)

 Nonterminal is: sequence of terminals and nonterminals

 In a derivation, an instance of nonterminal can be replaced by the
sequence of terminals and nonterminals on right of the production

 Often, there are two or more productions for one nonterminal
– use any of them in different parts of derivation

5

1/20/2021

Alternative Notations

 There are several notations for productions in use; all mean the same thing

ifStmt ::= if (expr) statement

ifStmt if (expr) statement

<ifStmt> ::= if (<expr>) <statement>

6

1/20/2021

Example Derivation

a = 1 ; if (a + 1) b = 2 ;

program ::= statement | program
statement
statement ::= assignStmt | ifStmt
assignStmt ::= id = expr ;
ifStmt ::= if (expr) statement
expr ::= id | int | expr + expr
Id ::= a | b | c | i | j | k | n | x | y | z
int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

7

1/20/2021

Parsing

 Parsing: reconstruct the derivation (syntactic structure) of a program

 In principle, a single recognizer could work directly from a concrete,

character-by-character grammar

 In practice this is never done

8

1/20/2021

Parsing & Scanning

 In Production compilers the recognizer is split
into two phases

Scanner: translates input characters to tokens

Also, report lexical errors like illegal characters and illegal

symbols

Parser: reads token stream and reconstruct the

derivation

Scanner Parser
source tokens

9

1/20/2021

Characters vs Tokens

 Input text

// this statement does very little

if (x >= y) y = 42;

 Token Stream

IF LPAREN ID(x) GEQ ID(y)

RPAREN ID(y) BECOMES INT(42) SCOLON

10

1/20/2021

Why Separate the Scanner and Parser?

 Simplicity & Separation of Concerns

 Scanner hides details from parser (comments, whitespace, input files, etc.)

 Parser is easier to build; has simpler input stream (tokens)

 Efficiency

 Scanner can use simpler, faster design

 (But still often consumes a surprising amount of the compiler’s total execution time)

11

1/20/2021

Tokens

 Idea: we want a distinct token kind (lexical class) for each distinct
terminal symbol in the programming language

 Examine the grammar to find these

 Some tokens may have attributes

 Examples: integer constant token will have the actual integer
(17, 42, …) as an attribute; identifiers will have a string with the
actual id

12

1/20/2021

Typical Tokens in Programming

Languages

 Operators & Punctuation

 + - * / () { } [] ; : :: < <= == = != ! …

 Each of these is normally a distinct lexical class

 Keywords

 if while for goto return switch void …

 Each of these is also a distinct lexical class (not a string)

 Identifiers

 A single ID lexical class, but parameterized by actual id

 Integer constants
 A single INT lexical class, but parameterized by int value

 Other constants, etc.

13

1/20/2021

Principle of Longest Match

 The scanner should pick the longest possible string to
make up the next token if there is a choice

 Example

return maybe != iffy;

should be recognized as 5 tokens

i.e., != is one token, not two, “iffy” is an ID, not IF
followed by ID(fy)

RETURN ID(maybe) NEQ ID(iffy) SCOLON

14

1/20/2021

Formal Languages & Automata Theory
(review)

 Alphabet: a finite set of symbols

 String: a finite, possibly empty sequence of symbols from an
alphabet

 Language: a set of strings, often infinite

 Finite specifications of (possibly infinite) languages

 Automaton – a recognizer; a machine that accepts all strings in a
language (and rejects all other strings)

 Grammar – a generator; a system for producing all strings in the
language (and no other strings)

 A particular language may be specified by many different
grammars and automata

 A grammar or automaton specifies only one language

15

1/20/2021

Regular Expressions and FAs

 The lexical grammar (structure) of programming languages can be

specified with regular expressions

 Tokens can be recognized by a deterministic finite automaton

16

1/20/2021

Regular Expressions

 Defined over some alphabet Σ

 For programming languages, alphabet is usually ASCII or

Unicode

 If re is a regular expression, L(re) is the language (set of strings)

generated by re

17

1/20/2021

Fundamental REs



re L(re) Notes

a { a } Singleton set, for each a in Σ

ε { ε } Empty string

{ } Empty language

B-18

1/20/2021

Operations on REs

 Precedence: * (highest), concatenation, | (lowest)

 Parentheses can be used to group REs as needed

re L(re) Notes

rs L(r)L(s) Concatenation

r|s L(r) L(s) Combination (union)

r* L(r)* 0 or more occurrences
(Kleene closure)



19

1/20/2021

Abbreviations

 The basic operations generate all possible regular

expressions, but there are common abbreviations used

for convenience. Typical examples:

Abbr. Meaning Notes

r+ (rr*) 1 or more occurrences

r? (r | ε) 0 or 1 occurrence

[a-z] (a|b|…|z) 1 character in given range

[abxyz] (a|b|x|y|z) 1 of the given characters

20

1/20/2021

Examples

re Meaning

+ single + character

! single ! character

= single = character

!= 2 character sequence

<= 2 character sequence

xyzzy 5 character sequence

B-21

1/20/2021

Fill the meaning

re Meaning

[abc]+

[abc]*

[0-9]+

[1-9][0-9]*

[a-zA-Z][a-zA-Z0-9_]*

B-22

1/20/2021

Abbreviations

 Many systems allow abbreviations to make writing and reading definitions

or specifications easier

name ::= re

 Restriction: abbreviations may not be circular (recursive) either directly or
indirectly (else would be non-regular)

23

1/20/2021

Example

 Possible syntax for numeric constants

digit ::= [0-9]

digits ::= digit+

number ::= digits (. digits)?

([eE] (+ | -)? digits) ?

 How would you describe this set in English?

 What are some examples of legal constants (strings) generated by

number?

24

1/20/2021

Recognizing REs

 Finite automata can recognize strings generated by regular expressions

 Not totally straightforward, but can be done systematically

25

1/20/2021

Finite State Automaton

 A finite set of states
 One marked as initial state

 One or more marked as final states

 States sometimes labeled or numbered

 A set of transitions from state to state

 Each labeled with symbol from Σ, or ε

 Operate by reading input symbols (usually characters)
 Transition can be taken if labeled with current symbol

 ε-transition can be taken at any time

 Accept when final state reached & no more input
 Scanner uses a FSA as a subroutine – accept longest match from current

location each time called

 Reject if no transition possible, or no more input and not in final state
(DFA)

26

1/20/2021

Example: FSA for “cat”

a tc

27

1/20/2021

DFA vs NFA

Deterministic Finite Automata (DFA)

No choice of which transition to take under any condition

 In particular, no ε transitions (arcs)

Non-deterministic Finite Automata (NFA)

Choice of transition in at least one case

Accept if some way to reach final state on given input

Reject if no possible way to final state

 i.e., may need to guess or backtrack

28

1/20/2021

FAs in Scanners

 DFA preferred for speed (no backtracking)

 Conversion from regular expressions to NFA is easy

 There is a well-defined procedure for converting a NFA to an equivalent

DFA

29

1/20/2021

From RE to NFA: base cases

a

ε

30

1/20/2021

rs

r sε

31

1/20/2021

r | s

r

sε ε

ε ε

32

1/20/2021

r *

r

ε

ε ε

33

1/20/2021

From NFA to DFA

 Subset construction
Construct a DFA from the NFA, where each DFA state represents

a set of NFA states

 Key idea
 The state of the DFA after reading some input is the set of all

states the NFA could have reached after reading the same input

 Algorithm: example of a fixed-point computation

 If NFA has n states, DFA has at most 2n states
 => DFA is finite, can construct in finite # steps

 Resulting DFA may have more states than needed
 See books for construction and minimization details

34

Example: DFA for hand-written scanner

 Idea: show a hand-written DFA for some typical programming language

constructs

 Then use to construct hand-written scanner

 Setting: Scanner is called whenever the parser needs a new token

 Scanner stores current position in input

 Starting there, use a DFA to recognize the longest possible input sequence that
makes up a token and return that token

1/20/2021

35

1/20/2021

Scanner DFA Example (1)

0

Accept LPAREN
(

2

Accept RPAREN
)

3

whitespace
or comments

Accept SCOLON
;

4

Accept EOF
end of input

1

36

1/20/2021

Scanner DFA Example (2)

Accept NEQ
!

6

Accept NOT7

5
=

[other]

Accept LEQ
<

9

Accept LESS10

8
=

[other]

37

1/20/2021

Scanner DFA Example (3)

[0-9]

Accept INT12

11

[other]

[0-9]

38

1/20/2021

 Strategies for handling identifiers vs keywords

 Hand-written scanner: look up identifier-like things in table of keywords to classify
(good application of perfect hashing)

 Machine-generated scanner: generate DFA will appropriate transitions to recognize
keywords

 Lots ’o states, but efficient (no extra lookup step)

Scanner DFA Example (4)

[a-zA-Z]

Accept ID or keyword14

13

[other]

[a-zA-Z0-9_]

39

1/20/2021

Implementing a Scanner by Hand –

Token Representation

 A token is a simple, tagged structure
public class Token {

public int kind; // token’s lexical class

public int intVal; // integer value if class = INT

public String id; // actual identifier if class = ID

// lexical classes

public static final int EOF = 0; // “end of file” token

public static final int ID = 1; // identifier, not keyword

public static final int INT = 2; // integer

public static final int LPAREN = 4;

public static final int SCOLN = 5;

public static final int WHILE = 6;

// etc. etc. etc. …

better: use
enums if you
have them

40

1/20/2021

Simple Scanner Example

// global state and methods

static char nextch; // next unprocessed input character

// advance to next input char

void getch() { … }

// skip whitespace and comments

void skipWhitespace() { … }

41

1/20/2021

Scanner getToken() method

// return next input token
public Token getToken() {

Token result;

skipWhiteSpace();

if (no more input) {
result = new Token(Token.EOF); return result;

}

switch(nextch) {
case '(': result = new Token(Token.LPAREN); getch(); return result;
case ‘)': result = new Token(Token.RPAREN); getch(); return result;
case ‘;': result = new Token(Token.SCOLON); getch(); return result;

// etc. …

42

1/20/2021

getToken() (2)

case '!': // ! or !=
getch();
if (nextch == '=') {
result = new Token(Token.NEQ); getch(); return result;

} else {
result = new Token(Token.NOT); return result;

}

case '<': // < or <=
getch();
if (nextch == '=') {
result = new Token(Token.LEQ); getch(); return result;

} else {
result = new Token(Token.LESS); return result;

}
// etc. …

43

1/20/2021

getToken() (3)

case '0': case '1': case '2': case '3': case '4':

case '5': case '6': case '7': case '8': case '9':

// integer constant

String num = nextch;

getch();

while (nextch is a digit) {

num = num + nextch; getch();

}

result = new Token(Token.INT, Integer(num).intValue());

return result;

…

44

1/20/2021

getToken() (4)

case 'a': … case 'z':

case 'A': … case 'Z': // id or keyword

string s = nextch; getch();

while (nextch is a letter, digit, or underscore) {

s = s + nextch; getch();

}

if (s is a keyword) {

result = new Token(keywordTable.getKind(s));

} else {

result = new Token(Token.ID, s);

}

return result;

45

1/20/2021

Project Notes

 Implement the token recognition code in C#

46

1/20/2021

Next on Agenda

Parsing

LR parsing

47

