
Parsing & Context-Free Grammars

BCS 307 – Compiler Construction

1/20/2021

Agenda

 Parsing overview

 Context free grammars

 Ambiguous grammars

2

1/20/2021

Parsing

The syntax of most programming languages can
be specified by a context-free grammar (CGF)

Parsing: Given a grammar G and a sentence w
in L(G), traverse the derivation (parse tree) for w

in some standard order and do something useful
at each node

The tree might not be produced explicitly, but the

control flow of a parser corresponds to a traversal

3

1/20/2021

Example

a = 1 ; if (a + 1) b = 2 ;

program ::= statement | program statement
statement ::= assignStmt | ifStmt
assignStmt ::= id = expr ;
ifStmt ::= if (expr) statement
expr ::= id | int | expr + expr
Id ::= a | b | c | i | j | k | n | x | y | z
int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

program

program

statement
statement

ifStmt

assignStmt
statement

expr assignStmt

expr expr

intid

id expr

int

id expr

int

G

w

4

1/20/2021

“Standard Order”

 For practical reasons the parser must be deterministic (no backtracking),

and the source program is examined from left to right.

 (i.e., parse the program in linear time in the order it appears in the source)

5

1/20/2021

Common Orderings

 Top-down

Start with the root

 Traverse the parse tree depth-first, left-to-right (leftmost
derivation)

LL(k)

Bottom-up

Start at leaves and build up to the root

Effectively a rightmost derivation in reverse(!)

LR(k) and subsets (LALR(k), SLR(k), etc.)

6

1/20/2021

“Something Useful”

At each point (node) in the traversal, perform
some semantic action

Construct nodes of full parse tree (rare)

Construct abstract syntax tree (common)

Construct linear, lower-level representation (more
common in later parts of a modern compiler)

Generate target code on the fly (1-pass compiler; not
common in production compilers – can’t generate
good code in one pass – but great if you need a
quick working compiler)

7

1/20/2021

Context-Free Grammars

Formally, a grammar G is a tuple <N,Σ,P,S>
where

N a finite set of non-terminal symbols

Σ a finite set of terminal symbols

P a finite set of productions

A subset of N × (N  Σ)*

S the start symbol, a distinguished element of N

If not specified otherwise, this is usually assumed to be the
non-terminal on the left of the first production

8

1/20/2021

Standard Notations

 a, b, c elements of Σ

 w, x, y, z elements of Σ*

 A, B, C elements of N

 X, Y, Z elements of N Σ

 , ,  elements of (N Σ)*

 A  or A ::=  if <A, > in P




9

1/20/2021

Derivation Relations (1)

  A  =>    iff A ::=  in P

 derives

 A =>*  if there is a chain of productions starting with A that generates 

 transitive closure

10

1/20/2021

Derivation Relations (2)

 w A  =>lm w   iff A ::=  in P

 derives leftmost

  A w =>rm   w iff A ::=  in P

 derives rightmost

 We will only be interested in leftmost and rightmost derivations – not

random orderings

11

1/20/2021

Languages

 For A in N, L(A) = { w | A =>* w }

 If S is the start symbol of grammar G, define L(G) = L(S)

 Nonterminal on the left of the first rule is taken to be the start symbol if one is not
specified explicitly

12

1/20/2021

Reduced Grammars

 Grammar G is reduced iff for every production A ::=  in G there is some

derivation

S =>* x A z => x  z =>* xyz

 i.e., no production is useless

 Convention: we will use only reduced grammars

13

1/20/2021

Ambiguity

Grammar G is unambiguous iff every w in L(G)
has a unique leftmost (or rightmost) derivation

Fact: unique leftmost or unique rightmost implies the
other

A grammar lacking this property is ambiguous

Note that other grammars that generate the same
language may be unambiguous

We need unambiguous grammars for parsing

14

1/20/2021

Example: Ambiguous Grammar for

Arithmetic Expressions

expr ::= expr + expr | expr - expr

| expr * expr | expr / expr | int

int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

 Exercise: show that this is ambiguous

 How? Show two different leftmost or rightmost derivations for the same string

 Equivalently: show two different parse trees for the same string

15

1/20/2021

Example (cont)

Give a leftmost derivation of 2+3*4 and show
the parse tree

expr ::= expr + expr | expr - expr

| expr * expr | expr / expr | int

int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8

| 9

16

1/20/2021

Example (cont)

Give a different leftmost derivation of
2+3*4 and show the parse tree

expr ::= expr + expr | expr - expr

| expr * expr | expr / expr | int

int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8

| 9

17

1/20/2021

Another example

 Give two different derivations of 5+6+7

expr ::= expr + expr | expr - expr

| expr * expr | expr / expr | int

int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8

| 9

18

1/20/2021

What’s going on here?

 The grammar has no notion of precedence or associatively

 Solution

 Create a non-terminal for each level of precedence

 Isolate the corresponding part of the grammar

 Force the parser to recognize higher precedence subexpressions first

19

1/20/2021

Classic Expression Grammar

expr ::= expr + term | expr – term | term

term ::= term * factor | term / factor | factor

factor ::= int | (expr)

int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7

20

1/20/2021

Derive 2 + 3 * 4

expr ::= expr + term | expr – term | term

term ::= term * factor | term / factor |

factor

factor ::= int | (expr)

int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7

21

1/20/2021

Check: Derive 5 + 6 + 7

 Note interaction between left- vs right-recursive rules
and resulting associativity

expr ::= expr + term | expr – term | term

term ::= term * factor | term / factor |

factor

factor ::= int | (expr)

int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7

22

1/20/2021

Check: Derive 5 + (6 + 7)

expr ::= expr + term | expr – term | term

term ::= term * factor | term / factor |

factor

factor ::= int | (expr)

int ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7

23

1/20/2021

Another Classic Example

 Grammar for conditional statements

stmt ::= if (cond) stmt

| if (cond) stmt else stmt

 Exercise: show that this is ambiguous

 How?

24

1/20/2021

One Derivation

if (cond) if (cond) stmt else stmt

stmt ::= if (cond) stmt
| if (cond) stmt else stmt

25

1/20/2021

Another Derivation

if (cond) if (cond) stmt else stmt

stmt ::= if (cond) stmt
| if (cond) stmt else stmt

26

1/20/2021

Solving “if” Ambiguity

 Fix the grammar to separate if statements with else clause and if

statements with no else

 Done in Java reference grammar

 Adds lots of non-terminals

 Use some ad-hoc rule in parser

 “else matches closest unpaired if”

 Change the language

 You better have permission to do this

27

Resolving Ambiguity with Grammar (1)

Stmt ::= MatchedStmt | UnmatchedStmt

MatchedStmt ::= ... |

if (Expr) MatchedStmt else MatchedStmt

UnmatchedStmt ::= if (Expr) Stmt |

if (Expr) MatchedStmt else UnmatchedStmt

 formal, no additional rules beyond syntax

 sometimes obscures original grammar

1/20/2021

28

Resolving Ambiguity with Grammar (2)

 If you can (re-)design the language, avoid the problem entirely

Stmt ::= ... |

if Expr then Stmt end |

if Expr then Stmt else Stmt end

 formal, clear, elegant

 allows sequence of Stmts in then and else branches, no { , } needed

 extra end required for every if

(But maybe this is a good idea anyway?)

1/20/2021

29

1/20/2021

Parser Tools and Operators

 Most parser tools can cope with ambiguous grammars

 Usually can specify operator precedence & associativity

 Allows simpler, ambiguous grammar with fewer nonterminals as basis for
generated parser, without creating problems

30

1/20/2021

Parser Tools and Ambiguous Grammars

 Possible rules for resolving other problems

 Earlier productions in the grammar preferred to later ones

 Longest match used if there is a choice

 Parser tools normally allow for this

 But be sure that what the tool does is really what you want

31

1/20/2021

Next…

 LR parsing

32

