Parsing & Context-Free Grammars

BCS 307 — Compiler Construction

Agendao

= Parsing overview
» Context free grammars

= Ambiguous grammars

1/20/2021

Parsing

®» The syntax of most programming languages can
be specified by a confext-free grammar (CGF)

»Parsing: Given a grammar G and a senfence w
INn L(G), fraverse the derivation (parse tree) for w
INn some sfandard order and do something useful
at each node

»The tree might not be produced explicitly, but the
control flow of a parser corresponds to a traversal

1/20/2021

program .= Statement | program statement
statement :.= assignStmt | ifStmt
assignStmt ::= id = expr;

EXQ M p | e (G | ifStmt .= if (expr) statement

expr.:= id| int| expr+ expr

Id::=a|b|c|iljlk|n|x]|y]|z
int::=0|1]2|3]|4|5|6]7]|8]9
program
Program/\
— statement
statement |
/ irStmt
statement
assignsStmt
assignsStmt
A\
id | expr id expr
| |
//|7t int
I

4

wa=1,;i1f (a + 1) Db=2

1/20/2021

“"Standard Order”

» [or practical reasons the parser must be deterministic (no backtracking),
and the source program is examined from left to right.

» (j.e., parse the program in linear tfime in the order it appearsin the source)

1/20/2021

Common Orderings

» [op-down
» Start with the root

» Traverse the parse tree depth-first, left-to-right (leftmost
derivation)

™ || (k)
®» Boftom-up

» Start af leaves and build up to the root
» Effectively a rightmost derivation in reverse(!)

» | R(k) and subsets (LALR(k), SLR(k), etc.)

1/20/2021

“Something Useful”

» At each point (nhode) in the traversal, perform
some semantic action

» Construct nodes of full parse tree (rare)
» Construct abstract syntax tree (common)

» Constfruct linear, lower-level representation (more
common in later parts of a modern compiler)

» Generate target code on the fly (1-pass compiler; not
common in production compilers — can’t generate
good code In one pass — but great if you need @
quick working compiler)

1/20/2021

Context-Free Grammars

»Formally, a grammar G is a tuple <N, %,P,5>
where

»N a finite set of non-ferminal symbols
®») a finite set of terminal symbols

®»P g finite set of productions
»A subsetof N x (N ul)*
» S the start symbol, a distinguished element of N

®»|f Not specified otherwise, this is usually assumed to be the
non-terminal on the left of the first production

1/20/2021

Standard Notations

®» O, b, c elementsof X

» W, X, Y,z elementsof L*

» A B, C elementsof N

» X,Y,Z elementsof N) X
» o, B,y elementsof (N X)*
» A OrA:=aif<A a>inP

1/20/2021

Derivation Relations (1)

» g Ay=>afBy iff Az=BInP
» derives
» A =>* g if there is a chain of productions starting with A that generates o

®» fransifive closure

1/20/2021

Derivation Relations (2)

» WAy=> _WwWpy iffA:=pINnP
» derives leftmost
» o Aw=>_afw iffA:=pInP

» derives rightmost

» We will only be interested in leffmost and rightmost derivations — not
random orderings

1/20/2021

Languages

» For AiNN,L(A) ={w | A=>*w}
» |fS isthe start symbol of grammar G, define L(G) =L(S)

» Nonterminal on the left of the first rule is taken to be the start symbol if one is not
specified explicitly

1/20/2021

Reduced Grammars

» Grammar G isreduced iff for every production A ;= ain G there is some
derivation

S=>* X Az=>Xaz=>%Xxyz
® |.e., no production is useless

» Convention: we will use only reduced grammars

1/20/2021

Ambiguity

» Grammar G is unambiguous iff every win L(G)
has a unique leftmost (or ightmost) derivation

® Fqct: unigque leftmost or unique rightmost implies the
other

®» A grammar lacking this property is ambiguous

» Note that other grammars that generate the same
language may be unambiguous

» \We need unambiguous grammars for parsing

1/20/2021

Example: Ambiguous Grammar for
Arithmetic Expressions

expr ;= expr + expr | expr - expr
| expr * expr | expr / expr | int

int:=0112]|3|14|5]6|7]8]¢9

» [Exercise: show that this is ambiguous

» Howe Show two different leftmost or rightmost derivations for the same string

» Fquivalently: show two different parse trees for the same string

1/20/2021

expr ;= expr + expr | expr - expr

EXOmple (COHT) | expr * expr | expr [/ expr | int
int::=0112|13[4|5|6]|7]38
| 9

» Gjve a lefimost derivation of 2+3*4 and show
the parse tree

1/20/2021

EXC] m ple (CO ﬂ'l') expr = expr + expr | expr - expr

| expr * expr | expr/expr | int
infz=0 1123456718
| 9

» Give a different lefimost derivation of
2+3*4 and show the parse tree

1/20/2021

expr ;= expr + expr | expr - expr

AnOTher eXCImp|e | expr * expr | expr / expr | int
int:=01112|3|4|5|6]|7]|8
| 9

» Give two different derivations of 5+6+7/

1/20/2021

What's going on heree

» The grammar has no notion of precedence or associatively
= Solufion

» Create a non-terminal for each level of precedence

» [solate the corresponding part of the grammar

» Force the parser to recognize higher precedence subexpressions first

1/20/2021

Classic Expression Grammar

expr ;= expr + ferm | expr-term | term
term ::= term * facfor | term / factor | factor
factor ::=int | (expr)

nt:=0 1123|485]|6]7

1/20/2021

Derive 2+ 3 * 4

expr ;.= expr + term | expr—term | term

term ::= ferm * factor | term / factor |
factor

factor ::=int | (expr)

infx:=01112|34]5]6]7

1/20/2021

Check: Derive 5+ 6 + 7/

expr ;.= expr + term | expr—term | term
term ::=term * factor | term / factor |

factor
factor ::=int | (expr)
intfz:=01|12]|3|4]|5]|6]|7

» Nofe inferaction between lefi- vs right-recursive rules
and resulting associativity

1/20/2021

Check: Derive 5 + (6 + /)

expr .:=expr + term | expr—-term | term
term ::= term * factor | term / factor |
factor

factor ::=int | (expr)
infx:=0]1112|3|4|5]|6]|7

1/20/2021

Another Classic Example

» Grammar for conditional statements
stmt ::=if (cond) stmt

| if (cond) stmt else stmt

» Exercise: show that this is ambiguous

» How?e

1/20/2021

One Derivation

stmt .= if (cond) stmt
| if (cond) stmt else stmt

if (cond) it (cond) stmt else stmt

1/20/2021

Another Derivation

stmt .= if (cond) stmt
| if (cond) stmt else stmt

if (cond) it (cond) stmt else stmt

1/20/2021

Solving “itf" Ambiguity

» [ix the grammar to separate if statements with else clause and if
statements with no else

» Done in Javareference grammar

» Adds lots of non-terminals

» Use some ad-hoc rule in parser

» ‘“ec|se matches closest unpaired if”

» Change the language

®» You better have permission to do this

1/20/2021

Resolving Ambiguity with Grammar (1)

Stmt == MatchedStTmt | UnmatchedStmt
MatchedStTmt = ... |

if (Expr) MatchedStmt else MatchedStmt
UnmatchedStmt .= if (Expr) Stmt |

if (Expr) MatchedStmt else UnmatchedStmt

» formal, no additional rules beyond syntax

®» sometimes obscures original grammar

1/20/2021

Resolving Ambiguity with Grammar (2)

» |f you can (re-)design the language, avoid the problem entirely

Stmt = ... |
if Expr then Stimt end |
if Expr then Stmt else Stmt end

» formal, clear, elegant
» qllows sequence of Stmts in then and else branches, no {, } needed

» cxira end required for every if

(But maybe this is a good idea anyway?)

1/20/2021

Parser Tools and Operators

» NMost parser tools can cope with ambiguous grammars

» Usually can specify operator precedence & associativity

» Allows simpler, ambiguous grammar with fewer nonterminals as basis for
generated parser, without creating problems

1/20/2021

Parser Tools and Ambiguous Grammars

» Possible rules for resolving other problems
» Earlier productions in the grammar preferred to later ones
» | ongest match used if there is a choice

» Parser tools normally allow for this

» But be sure that what the tool does is really what you want

1/20/2021

Next...

= | R parsing

1/20/2021

