
BCS 307 – Compiler Construction
Cr Hr. 3+1

Agenda

 Introduction to Compilers

 Compilation vs Interpretation

 Implementation strategies

 Compiler Structure

 Phases of Compilation

2

The point is…

 Execute this!

int num= 4;

int factorial = 1;

while (num > 1) {

factorial = factorial*num;

num=num-1;

}

 How can computers execute this? Computers only know 1’s and 0’s

3

Interpreters & Compilers

 Interpreter

 A program that reads an source program and produces the results of executing
that program

 Compiler

 A program that translates a program from one language (the source) to another
(the target)

4

Common Issues

 Compilers and interpreters both must read the input – a stream of

characters – and “understand” it; analysis

w h i l e (k < l e n g t h) { <nl> <tab> i f (a [k] > 0) <nl> <tab>
<tab>{ n P o s++ ; } <nl> <tab> }

5

Interpreter

 Interpreter

 Execution engine

 Program execution interleaved with analysis

running = true;

while (running) {

analyze next statement;

execute that statement;

}

 Usually need repeated analysis of statements (particularly in loops, functions)

 But: immediate execution, good debugging & interaction

6

Compiler

Read and analyze entire program

Translate to semantically equivalent program in
another language

Presumably easier to execute or more efficient

Should “improve” the program in some fashion

Offline process

Tradeoff: compile time overhead (preprocessing step)
vs execution performance

7

Processes Before and After

Compilation

 A program usually goes through

some process before and after compilation

8

Compilation vs Interpretation (1)

Not a clear-cut distinction

Pure Compilation

The compiler translates the high-level
source program into an equivalent
target program (typically in machine
language), and then goes away:

9

Compilation vs Interpretation (2)

Pure Interpretation

Interpreter stays around for the
execution of the program

Interpreter keeps control during
execution

10

Compilation vs Interpretation (3)

Interpretation:

Greater flexibility

Better diagnostics (error messages)

Compilation

 Better performance

11

Compilation vs Interpretation (4)

Some language implementations
include a both compilation and
interpretation

Compilation or simple pre-processing,
followed by interpretation

12

Implementation strategies (1)

Preprocessor

Removes comments and white space

Groups characters into tokens (keywords,

identifiers, numbers, symbols)

Expands abbreviations in the style of a

macro assembler

Identifies higher-level syntactic structures

(loops, subroutines)

13

Implementation strategies (2)

Library of Routines and Linking

Compiler uses a linker program to merge the

appropriate library of subroutines (e.g., math

functions such as sin, cos, log, etc.) into the

final program:

14

Implementation strategies (3)

The C Preprocessor (conditional

compilation)

Preprocessor deletes portions of code,

which allows several versions of a program

to be built from the same source

15

In some cases a programming system may

deliberately delay compilation until the last

possible moment.

The Java language definition defines a machine-

independent intermediate form known as byte

code. Byte code is the standard format for

distribution of Java programs.

The main C# compiler produces .NET Common

Language Runtime (CLR), which is then translated

into machine code immediately prior to execution.

Dynamic and Just-in-Time Compilation
16

Implementations

 Compilers

 C#, C, C++, Java etc.

 Strong need for optimization

 Interpreters

 PERL, Python, Ruby, awk, sed, shells, Scheme/Lisp/ML, postscript/pdf, Java VM

 Particularly effective if interpreter overhead is low

17

Hybrid Approaches (1)

Classic example: Java

Compile Java source to byte codes (.class files)

Execution

Interpret byte codes directly, or

Compile some or all byte codes to native code

Just-In-Time compiler (JIT) – detect hot spots & compile on the
fly to native code

Variations used for .NET& implementations of
dynamic and functional languages, e.g.,
JavaScript, Haskell

18

Hybrid Approaches (2)

 A typical hybrid compilation

19

Why Study Compilers? (1)

 Become a better programmer

 Insight into interaction between languages, compilers, and hardware

 Understanding of implementation techniques

 Know the stuff in the debugger

 Better intuition about what your code does

20

Why Study Compilers? (2)

 Compiler techniques are everywhere

 Parsing (little languages, interpreters, XML)

 Software tools (verifiers, checkers, …)

 Database engines, query languages

 AI, etc.: domain-specific languages

 Text processing

 Tex/LaTex -> dvi -> Postscript -> pdf

 Hardware: VHDL; model-checking tools

 Mathematics (Mathematica, Matlab)

21

Why Study Compilers? (3)

 Blend of theory and engineering

 Applications of theory to practice

 Parsing, scanning, static analysis

 Some very difficult problems (NP-hard or worse)

 Resource allocation, “optimization”, etc.

 Need to come up with good-enough approximations/heuristics

22

Why Study Compilers? (4)

 Ideas from many parts of CSE

AI: Greedy algorithms, heuristic search

Algorithms: graph algorithms, dynamic programming,
approximation algorithms

Theory: Grammars, DFAs and PDAs, pattern matching,
fixed-point algorithms

Systems: Allocation & naming, synchronization,
locality

Architecture: pipelines, instruction set use, memory
hierarchy management

23

Why Study Compilers? (5)

 You may write a compiler yourself

 You can write parsers and interpreters for little languages

 XML, Command languages, configuration files,, …

24

Structure of a Compiler

 First approximation

 Front end: analysis

 Read source program and understand its structure and meaning

 Back end: synthesis

 Generate equivalent target language program

Source TargetFront End Back End

25

Compiler must…

recognize legal programs (& complain about
illegal ones)

generate correct code

manage storage of all variables/data

agree with OS & linker on target format

Source TargetFront End Back End

26

Implications

Need some sort of Intermediate
Representation(s) (IR)

Front end maps source into IR

Back end maps IR to target machine code

Often multiple IRs – higher level at first, lower
level in later phases

Source TargetFront End Back End

27

Programming Environment Tools

Tools in Integrated in an Integrated
Development Environment (IDE)

28

Structure of Compiler

 Inside a compiler, there are two main parts: analysis and synthesis.

 Analysis part breaks up the source program into constituent pieces and
imposes a grammatical structure on them.

 If it detects either syntactically ill formed or semantically unsound source code, it
must provide error messages.

 It also collects information about the source program and stores it in a data
structure called a symbol table, which is passed along with the intermediate
representation to the synthesis part.

 Synthesis part constructs the desired target program from the intermediate
representation and the information in the symbol table.

 The analysis part is often called the front end of the compiler; the synthesis
part is the back end.

29

Phases of Compilation
30

Compilation Overview - Scanning

Scanning is recognition of a regular
language, with DFA (deterministic finite
automaton).

Divides the program into "tokens", the
smallest meaningful units.

It also saves complexity for later phases.

31

Compilation Overview - Parsing

Recognition of a context-free

language, e.g., using Pushdown

Automaton (PDA)

Parsing discovers the "context free"
structure of the program.

Informally, it finds the structure you can
describe with syntax diagrams.

32

Compilation Overview - Semantic analysis

The discovery of meaning in the

program

The compiler actually does what is called
static semantic analysis (at compile time).

Things like array subscript out of bounds
can't be figured out until run time, so they

are part of the program's dynamic
semantics.

33

Compilation Overview - Intermediate

form

After the program passes all checks,
intermediate code may be
generated.

IFs are often chosen for machine
independence, ease of optimization, or
compactness.

Often resemble machine code for some
imaginary machine architecture.

Some compilers move the code through
more than one IF.

34

Compilation Overview – Code

Optimation and Generation (1)

Takes an intermediate-code
program and produces another one
that does the same thing faster, or in
less space

The optimization phase is optional

Code generation phase produces
assembly language or relocatable
machine language (relative address
is different from its absolute address)

35

Compilation Overview – Code

Optimation and Generation (2)

Certain machine-specific optimizations
(use of special instructions or addressing

modes, etc.) may be performed during

target code generation

Symbol table: all phases rely on a symbol

table that keeps track of all the identifiers

in the program.

36

Front End

Scanner: Responsible for converting character stream to

token stream

 Also strips out white space, comments

Parser: Reads token stream; generates IR Source

language specified by a formal grammar

There are some tools that can read the grammar and

generate scanner & parser

Scanner Parser
source tokens IR

37

Scanner Example

 Input text
// this statement does very little

if (x >= y) y = 42;

 Token Stream

Notes: tokens are atomic items, not character strings;
comments & whitespace are not tokens (not true for all
languages, cf. Python)

IF LPAREN ID(x) GEQ ID(y)

RPAREN ID(y) BECOMES INT(42) SCOLON

38

Parser Output (IR)

Many different forms.

Engineering tradeoffs have changed over time (e.g.,

memory is almost free these days).

Common output from a parser is an abstract syntax tree.

Essential meaning of the program without the

syntactic noise.

39

Parser Example

 Token Stream Input  Abstract Syntax Tree

IF LPAREN ID(x)

GEQ ID(y) RPAREN

ID(y) BECOMES

INT(42) SCOLON

ifStmt

>=

ID(x) ID(y)

assign

ID(y) INT(42)

40

Static Semantic Analysis

 During or (more commonly) after parsing

 Type checking

Check language requirements like proper declarations, etc.

 Preliminary resource allocation

Collect other information needed by back-end code

generation

41

Back-End

 Responsibilities

 Translate IR into target machine code

 Should produce “good” code

“good” = fast, compact, low power (pick some)

 Should use machine resources effectively

Registers

Instructions & function units

Memory hierarchy

42

Back-End Structure

 Typically split into two major parts

“Optimization” – code improvements

Usually works on lower-level IR than AST

Code generation

Instruction selection & scheduling

Register allocation

43

The Result

 Input

if (x >= y)

y = 42;

Output

mov eax,[ebp+16]

cmp eax,[ebp-8]

jl L17

mov [ebp-8],42

L17:

ifStmt

>=

ID(x) ID(y)

assign

ID(y) INT(42)

44

Some History (1)

 1950’s

 FORTRAN I (1954) – competitive with hand-optimized code

 1960’s

 New languages: ALGOL, LISP, COBOL, SIMULA

 Formal notations for syntax, esp. BNF

 Fundamental implementation techniques

Stack frames, recursive procedures, etc.

45

Some History (2)

 1970’s

Syntax: formal methods for producing compiler front-
ends;

 Late 1970’s, 1980’s

New languages (functional; object-oriented -
Smalltalk)

New architectures (RISC machines, parallel machines,
memory hierarchy)

46

Some History (3)

 1990s

Techniques for compiling objects and classes,

efficiency in the presence of dynamic program

elements and short methods (Self, Smalltalk –JVMs,

etc.)

Just-in-time compilers (JITs)

Compiler technology critical to effective use of new

hardware (RISC, Itanium, parallel machines, complex

memory hierarchies)

47

Some History (4)

 Last decade

Compilation techniques in many new places.

Software analysis, verification, security.

 Phased compilation – blurring the lines between “compile time”

and “runtime”.

 Dynamic languages – e.g., JavaScript, …

Compilers for parallel systems.

48

Course Project

Compiler construction is best learnt by building it (at

least some parts).

Course project should implement Lexical Analyser and

Syntax Analyser.

You can go further …

49

Programming Environments

Whatever you want!

But you can use C# as you are already familiar with it,

and its quick way to develop programs.

For IDE, you can use Visual Studio

50

Some Resources

 The GNU Compiler Collection (gcc) consists of open-

source compilers for C, C++, Fortran, Java, and other

languages.

 Phoenix is a compiler-construction toolkit that provides

an integrated framework for building the program

analysis, code generation, and code optimization

phases of compilers.

51

Prerequisites

Courses in:

Data structures & algorithms

Linked lists, dictionaries, trees, hash tables, Formal
languages & automata

Regular expressions, finite automata, context-free
grammars, maybe a little parsing

Machine organization

Assembly-level programming

52

Grading Policy

 As devised by the university

53

Online Lectures

 Lectures will be delivered online on MS Teams

 Lecture notes will be available on the same

54

Communications

 At the end of each session, you will have time for
questions.

 You may also post your queries on Teams, or my email.

55

Books

 Include:

 Aho, Lam, Sethi, Ullman, “Compilers Principles, Tools and Techniques”, 2nd edition

 Cooper & Torczon, Engineering a Compiler

56

Questions?

 Make sure you understand the concepts. Ask questions where find

problems.

 As the course proceeds, try implementing the concepts as we move on.

57

Upcoming Topics

 Language Basics

 Lexical analysis – scanning

 Its helpful to read the first few chapters of the book beforehead.

58

