Languages, Automata, Regular
Expressions & Scanners

BCS 307 — Compiler Construction

Agendao

Basic concepts of formal languages and grammars
Regular expressions

Lexical specification of programming languages
Using finite automata to recognize regular expressions

Scanners and Tokens

1/20/2021

Programming Language specifications

» Since the 1960s, the syntax of every significant programming language has
been specified by a formal grammar

» First done in 1959 with BNF (Backus-Naur Form) used to specify ALGOL 60 syntax

1/20/2021

Grammar for a Tiny Language

®» orogram .= statement | program statement
»sfafement .= assignStmt | ifStmf

» qssignStmt = id = expr ;

» fStmt .= it (expr) stafement

»oxori=id | Int
md:=a|b|c
winf.:=0|1]2

expr + expr
]l klIn]x]|y]|z
|

3141567819

1/20/2021

Productions

» The rules of a grammar are called productions

» Rules contain:

- N;)n)’rerminol symbols: grammar variables (program, statement, id,
etc.

- germifnc(JI)symt)>ols: concrete syntax that appears in programs (a, b, c,
6 (), ..

» Nonterminal is: sequence of terminals and nonterminals

= |n a derivation, an instance of nonferminal can be replaced by the
sequence of terminals and nonterminals on right of the production

» Offen, there are two or more productions for one nonterminal
— use any of them in different parts of derivation

1/20/2021

Alternative Notations

» There are several notations for productions in use; all mean the same thing

ifStmt .= if (expr) statement

ifStmt =% if (expr) statement

<{fStmft> = if (<expr>) <statement>

1/20/2021

Example Derivation

program .= statement | program
statement

statement ::= assignStmt | ifStmt
assignstmt ::= id = expr;
IfStmt .= if (expr) statement
expr..= id| int| expr+ expr
Id::=a|b|c|li|ljlk|n]x
int::=0]1]2|3]|4|5]6]

Z

y |
189

|
7

a=1,;1f (a + 1) b=2;

1/20/2021

Parsing

» Parsing: reconstruct the derivation (syntactic structure) of a program

» |n principle, a single recognizer could work directly from a concrete,
character-by-character grammar

» |0 practice thisis never done

1/20/2021

Parsing & Scanning

® |n Production compilers the recognizer is splif
INfo two phases

» Scanner: franslates input characters to tokens

» Also, report lexical errors like illegal characters and illegal
symbols

®» Parser: reads token stream and reconstruct the
derivation

source tokens

1/20/2021

Characters vs Tokens

» |nput fext
// this statement does very little

if(x >=y)y=42;

» Token Stream

IF | | LPAREN | | ID(x) || GEQ | | ID(y)

RPAREN | | ID(y) | | BECOMES | | INT(42) | | SCOLON

1/20/2021

Why Separate the Scanner and Parsere

» Simplicity & Separation of Concerns
» Scanner hides details from parser (comments, whitespace, input files, etc.)
» Parser is easier to build; has simpler input stream (tokens)

» Efficiency

® Scanner can use simpler, faster design

» (But still often consumes a surprising amount of the compiler’s total execution time)

1/20/2021

Tokens

» |dea: we want a distinct token kind (lexical class) for each distinct
terminal symbol in the programming language

» Examine the grammar to find these
» Some tokens may have attributes

» Examples: infeger constant token will have the actual integer
(17, 42, ...) as an attribute; identifiers will have a string with the
actual id

1/20/2021

Typical Tokens in Programming
Languages

» Operators & Punctuation

+-*/(){}[]; in<<s===I=1_,
» Fach of these is normally a distinct lexical class
» Keywords

» f while for goto return switch void ...
» Fach of these is also a distinct lexical class (not a string)

» |dentifiers
» A single ID lexical class, but parameterized by actual id

®» |[nfeger constants
» A single INT lexical class, but parameterized by int value

» Other constants, etc.

1/20/2021

Principle of Longest Match

» The scanner should pick the longest possible string to
make up the next token if there is a choice

» Fxample
return maybe = iffy;
should be recognized as 5 tokens

RETURN | | ID(maybe) | | NEQ | | ID(iffy) | | SCOLON

l.e., I=1s one token, not two, “iffy" is an ID, not IF
followed by ID(fy)

1/20/2021

Formal Languages & Automata Theory
(review)

» Alphabet: a finite set of symbols

» String: a finite, possibly empty sequence of symbols from an
alphabet

®» | anguage: a set of strings, often infinite
®» Finite specifications of (possibly infinite) languages

» Automaton —a re,co%nizer; a machine that accepts all strings in a
language (and rejects all other strings)

» Grammar — a generator; a system for producing all strings in the
language (and no other strings)

» A parficular language may be specified by many different
grammars and automata

» A grammar or automaton specifies only one language

1/20/2021

Regular Expressions and FAS

» The lexical grammar (structure) of programming languages can be
specified with regular expressions

» Tokens can be recognized by a deterministic finite automaton

1/20/2021

Regular Expressions

» Defined over some alphabet ¥

» For programming languages, alphabet is usually ASCII or
Unicode

» |f re is a regular expression, L(re) is the language (set of strings)
generated by re

1/20/2021

Fundamental REs

re |L(re) |Notes

a {a} Singleton set, for each a in 2
€ {€} Empty string

D {} Empty language

1/20/2021

Operations on REs

re |L(re) Notes

rs |[L(r)L(s) Concatenation

rls [L(r) UL(s) |Combination (union)
r* |L(r)* 0 or more occurrences

(Kleene closure)

» Precedence: * (highest), concatenation, | (lowest)
» Parentheses can be used to group REs as needed

1/20/2021

Abbreviations

®» The basic operatfions generate all possible regular
expressions, but there are common abbreviations used
for convenience. Typical examples:

Abbr. Meaning Notes

r+ (rr*) 1 or more occurrences

r? (r|e) 0 or 1 occurrence

[a-Z] (a|b]...|2) 1 character in given range
[abxyz] | (a|b|x|y|z) |1 of the given characters

1/20/2021

Examples

Meaning

single + character

single ! character

single = character

2 character sequence

2 character sequence

5 character sequence

1/20/2021

Fill the meaning

re

Meaning

‘abc]+

[abc]*

0-9]+

1-9][0-9]*

[a-zA-Z][a-zA-Z0-9_]*

1/20/2021

Abbreviations

» Many systems allow abbreviations to make writing and reading definitions
or specifications easier

name ..=re

» Restriction: abbreviations may not be circular (recursive) either directly or
indirectly (else would be non-regular)

1/20/2021

Example

» Possible syntax for numeric constants
digit ::= [0-9]
digits ::= digit+

number .= digits (. digits)¢
([eE] (+ | -)¢ digifs) ¢

» How would you describe this set in English?

» What are some examples of legal constants (strings) generated by
number?

1/20/2021

Recognizing REs

» Finite automata can recognize strings generated by regular expressions

» Not totally straightforward, but can be done systematically

1/20/2021

Finite State Automaton

» A finite set of states
» One marked as initial state
» One or more marked as final states
» States sometimes labeled or numbered
» A set of transitions from state to state
» Fach labeled with symbol from %, or ¢
» Operate by reading input symbols (usually characters)
» Transition can be taken if labeled with current symbol
» c-transition can be taken at any time
» Accept when final state reached & no more input

canner uses a FSA as ? SanI’OUﬂﬂe — accept longest match from current
ocation each time calle

-» Iﬁjeli%:’r If no transition possible, or no more input and not in final state

1/20/2021

Example: FSA tor “cat”

222222222

DFA vs NFA

» Deterministic Finite Automata (DFA)
®» No choice of which fransition to take under any condition
» |n particular, no € transitions (arcs)
» Non-deterministic Finite Automata (NFA)
» Choice of transition in at least one case
» Accept if some way to reach final state on given input

» Reject if no possible way to final state
® |.e., may heed o guess or backtrack

1/20/2021

FAS INn Scanners

» DFA preferred for speed (no backtracking)
» Conversion from regular expressions to NFA is easy

» There is a well-defined procedure for converting a NFA to an equivalent
DFA

1/20/2021

From RE To NFA: base cases

o6
o6

1/2

0/2021

1/20/2021

From NFA 1o DFA

» Subset consfruction

» Construct a DFA from the NFA, where each DFA state represents
a set of NFA states

» Key idea

» The state of the DFA after reading some input is the set of all
states the NFA could have reached after reading the same input

» Algorithm: example of a fixed-point computation

» |[f NFA has n states, DFA has at most 2" states
» => DFA is finite, can construct in finite # steps

» Resulting DFA may have more states than needed
» See books for construction and minimization details

1/20/2021

Example: DFA for hand-written scanner

» |dea: show a hand-written DFA for some typical programming language
constructs

» Then use to construct hand-written scanner
» Sefting: Scanner is called whenever the parser needs a new token

» Scanner stores current position in input

» Starting there, use a DFA to recognize the longest possible input sequence that
makes up a token and return that token

1/20/2021

Scanner DFA Example (1)

whitespace
or comments

end of input

A 4

Accept EOF

A 4

Accept LPAREN

A 4

Accept RPAREN

Y

OOOO

Accept SCOLON

1/20/2021

Scanner DFA Example (2)

Accept NEQ

Accept NOT

Accept LESS

oG,
-
T

1/20/2021

Scanner DFA Example (3)

09 [O[o-g]

[01"/76'/‘] :@ Accept INT

1/20/2021

Scanner DFA Example (4)

[@-zA-Z0-9_]

[01"/76/‘] : Accept ID or keyword

» Strategies for handling identifiers vs keywords

» Hand-written scanner: look up identifier-like things in table of keywords to classify
(good application of perfect hashing)

» Machine-generated scanner:. generate DFA will appropriate transitions to recognize
keywords

» | ots 'o states, but efficient (no extra lookup step)

[a-ZA-Z]

1/20/2021

Implementing a Scanner by Hand -
Token Representation

» A token is a simple, tagged structure
public class Token {

public inf kind; // token’s lexical class
public int intVal; //integer value if class = INT
public String id; // actual identifier if class = ID

// lexical classes
public static final int EOF = 0; // “end of file” token

better: use public static finalintID =1; //identifier, not keyword
enums. if you public static final int INT = 2; // integer
have them public stafic final int LPAREN = 4;

public static final int SCOLN = 5;
public static final int WHILE = 6;
// etc. efc. etc. ...

1/20/2021

Simple Scanner Example

// global state and methods
static char nextch; // next unprocessed input character

// advance to next input char
void getch() { ...}

// skip whitespace and comments
void skipWhitespace() { ... }

1/20/2021

Scanner getToken() method

// return next input token
public Token getToken() {
Token result;

skipWhiteSpace();

if (no more input) {
result = new Token(Token.EOF); return result;

}

switch(nextch) {
case '(: result = new Token(Token.LPAREN); getch(); return result;
case ‘)" result = new Token(Token.RPAREN); getch(); return result;
case “;": result = new Token(Token.SCOLON); getch(); return result;

// etc. ...

1/20/2021

geflToken|() (2)

case 'l // lorl=
getch();
if (nextch =="="){
result = new Token(Token.NEQ); getch(); return result;
} else {
result = new Token(Token.NOT); return result;

}

case <" //<or<=
getch();
if (nextch =="="){
result = new Token(Token.LEQ); getch(); return result;
} else {
result = new Token(Token.LESS); return result;

}
/] etc. ...

1/20/2021

geflToken() (3)

case 0 case '1: case 2": case '3": case '4";
case '5': case '6: case '/': case '8 case '9";
// integer constant
String num = nexitch;
getch();
while (nextch is a digif) {
num = num + nextch; getch();
}
result = new Token(Token.INT, Integer(num).intValue());
return result;

1/20/2021

geflToken|() (4)

case 'a’. ... case 'z
case 'A. ... case 'Z". //id or keyword
string s = nextch; getch();
while (nextch is a letter, digit, or underscore) {
s = s + nextch; getch();
}
if (sis a keyword) {
result = new Token(keywordTable.getKind(s));
} else {
result = new Token(Token.ID, s);

}

return result;

1/20/2021

Project Nofes

» |mplement the token recognition code in C#

1/20/2021

Next on Agendao

» PArsing
»| R parsing

1/20/2021

