
Compiler Construction

Lecture notes 1

Compiler Construction

Lecture Notes

Compiler Construction

Lecture notes 2

Semantic Analysis and Symbol Table

Compiler Construction

Lecture notes 3

Semantics

Semantics of a language provide meaning to its constructs. Semantics help interpret

symbols, their types, and their relations with each other. Semantic analysis decides

whether the syntax structure of the source program derives any meaning or not.

CFG + semantic rules = Syntax Directed Definitions

For example: int a = “value”;

Is not an error in lexical and syntax analysis phases, as it is lexically and structurally

correct, but it should generate a semantic error as the type of the assignment differs.

These rules are set by the grammar of the language and evaluated in semantic

analysis. Semantic analysis performs following tasks:

 Scope resolution

 Type checking

 Array-bound checking

Semantic Errors

Some of the semantics errors that the semantic analyzer recognizes:

 Type mismatch

 Undeclared variable

 Reserved identifier misuse.

 Multiple declaration of variable in a scope.

 Accessing an out of scope variable.

 Actual and formal parameter mismatch.

Compiler Construction

Lecture notes 4

Attribute Grammar

Attribute grammar is a special context-free grammar with some additional attributes

appended to one or more of its non-terminals to provide context-sensitive

information. Each attribute has well-defined domain of values, such as integer, float,

character, string, and expressions.

Attribute grammar is a medium to provide semantics to the context-free grammar

and it can help specify the syntax and semantics of a programming language.

Attribute grammar (when viewed as a parse-tree) can pass values or information

among the nodes of a tree.

Example:

E → E + T { E.value = E.value + T.value }

The right part of the CFG contains the semantic rules that specify how the grammar

should be interpreted. Here, the values of non-terminals E and T are added together

and the result is copied to the non-terminal E.

Semantic attributes may be assigned to their values from their domain at the time of

parsing and evaluated at the time of assignment or conditions.

Compiler Construction

Lecture notes 5

Program Semantics and Symbol Table

Information from the symbol-table entry is needed for semantic analysis and code

generation.

position = initial + rate * 60

For the above expressions, the tokens generated will be:

<id, 1> <=> <id, 2> <+> <id, 3> <*> <int_const, 4>

Here position for example, is a lexeme that would be mapped into a token <id, 1>

where id is an abstract symbol standing for identifier and 1 points to the symbol-

table entry for position.

The symbol-table entries generated for the above expression should be:

Table 1: Symbol-table for the expression above

1 position float …

2 initial float …

3 rate int …

4 60 inst_const …

…

The semantic analyzer uses the information in the symbol table to check the source

program for semantic consistency with the language definition. It also gathers type

information and saves it in the symbol table, for subsequent use during intermediate-

code generation.

An important part of semantic analysis is type checking, where the compiler checks

that each operator has matching operands. For example, many programming

language definitions require an array index to be an integer; the compiler must report

an error if a floating-point number is used to index an array.

Compiler Construction

Lecture notes 6

Figure 1: Translation of the expression code above in the front-end

Symbol-Table Management:

Compiler records the variable names used in the source program and collect

information about various attributes of each name. These attributes may provide

information about the storage allocated for a name, its type, its scope, and in the case

of procedure names, such things as the number and types of its arguments, the

method of passing each argument (for example, by value or by reference), and the

type returned.

The symbol table is a data structure containing a record for each variable name, with

fields for the attributes of the name. The data structure should be designed to allow

the compiler to find the record for each name quickly and to store or retrieve data

from that record quickly.

Compiler Construction

Lecture notes 7

Symbol Table

Symbol tables are data structures that hold information about identifiers. Information

is put into the symbol table when the declaration of an identifier is analyzed. A

semantic action gets information from the symbol table when the identifier is

subsequently used, for example, as a factor in an expression.

The information is collected incrementally by the analysis phases of a compiler and

used by the synthesis phases to generate the target code. Entries in the symbol table

contain information about an identifier such as its lexeme, its type, its scope, and any

other relevant information.

The scope of a declaration is the portion of a program to which the declaration

applies. You can implement scopes by setting up a separate symbol table for each

scope. A program block with declarations will have its own symbol table with an

entry for each declaration in the block. This approach also works for other constructs

that set up scopes; for example, a class would have its own table, with an entry for

each field and method.

To implement Symbol Table, we can create a new class SymbolTable and use a

HashTable to store the symbols. Each entry in the table is a key-value pair, with key

as the token lexeme and value as the symbol class object. The symbol class object

contains the information about the lexeme including its type, scope and any other

relevant information.

The SymbolTable class also contains methods to put method to insert a new symbol

into the table and get method to retrieve a symbol from the table.

Compiler Construction

Lecture notes 8

The Use of Symbol Tables

The role of a symbol table is to pass information from declarations to uses. A

semantic action “puts” information about identifier x into the symbol table, when

the declaration of x is analyzed. Subsequently, a semantic action associated with a

production such as factor -> id “gets” information about the identifier from the

symbol table.

