Compiler Construction

Compiler Construction

Lecture Notes

Lecture notes

Compiler Construction

Syntax Analysis

Agenda

Top-Down Parsing

Bottom-Up Parsing

Lecture notes

Compiler Construction

Top-Down Parsing

Top-down parsing constructs a parse tree for the input string, starting from the root
and creates the nodes of the parse tree in preorder (depth-first). Top-down parsing
can be viewed as finding a leftmost derivation for an input string.

Example: The sequence of parse trees in the Figure 1 for the input id + id * id is a
top-down parse according to the expression grammar:

E—-TE

EF' ++TE' |«

T FT

-!.' y w F -!r -

Fa({E) icd

This sequence of trees corresponds to a leftmost derivation of the input.

At each step of top-down parsing, the key problem is to determine the production to
be applied for a nonterminal. Once a production is chosen, the rest of parsing process
just “matches” the terminal symbols in the production body with the input string.

E = F = E = E = E = E
lim ;" Y lim / Y lim / Y lm / \ L / \
T FE' T FE T FE T E T E
/ / /\ VATV RN
S S S I 6
id id ¢ id «
= E = E = E
I / \ I / \ lim / \
T E.f f E.f ! !
VARV NN VARV /1NN
F 7" + T FE F 7T + T F T + T FE
| /7 N\ [7N\ | /N
id ¢ F T id ¢ }|~_' T id ¢ F /TI
id id « F T
FE E E
lm / I / lm /
i’ T E.f !
SN S NN 1 /N
F T + T ! T + T E F T + T £
|| 7N\ | VRN | /N
id ¢ F T id ¢ F T id ¢ F T ¢
VAN
id = F 17 id = 1|f' T id = F 1
id id ¢ id ¢

Figure 1: Top-down parse for id + id * id

Lecture notes

Compiler Construction

The general form of top-down parsing, called recursive-descent parsing, may require
backtracking to find the correct production to be applied. Predictive parsing is a
special case of recursive-descent parsing, not requiring backtracking. Predictive
parsing chooses the correct production by looking ahead at the input a fixed number
of symbols, typically only one (the next input symbol).

Top-down parse tree of the expression above constructs a tree with two nodes labeled
E’. At the first E’ node (in preorder), the production E’ -> +TE’ is chosen; at the
second E’ node, the production E’ -> £ is chosen. A predictive parser can choose
between E’-productions by looking at the next input symbol.

The class of grammars for which we can construct predictive parsers looking k
symbols ahead in the input is called the LL(k) class.

Lecture notes

Compiler Construction

Recursive-Descent Parsing:
A typical procedure for a nonterminal in a top-down parser is shown below:
void A() {
Choose an A-production, A -> X1 Xz, ..., Xi;
for(i=1tok){
if (Xiis a nonterminal)
call procedure Xi();
else if (Xi equals the current input symbol a)
advance the input to the next symbol;

else /* an error has occurred */;

A recursive-descent parsing program consists of a set of procedures, one for each
nonterminal. Execution begins with the procedure for the start symbol, which halts
successfully if its procedure body scans the entire input string.

A recursive-descent may require backtracking; that is, it may require repeated scans
over the input. However, backtracking is rarely needed to parse programming
language constructs, so backtracking parsers are not common.

To allow backtracking, the pseudo code above needs to be modified. First, it cannot
choose a unigue A-production at line (1), so try each of several productions in some
order. Then, failure at line (7) of the code suggests to return to line (1) and try another
A-production.

Only if there are no more A-productions to try, declare that an input error has been
found. In order to try another A-production, reset the input pointer to where it was
when we first reached line (1). Thus, a local variable is needed to store this input
pointer for future use.

Lecture notes

Compiler Construction

Example : Construct top-down parse tree for the grammar below:

S » cAd

A s ab \ a

To construct a parse tree top-down for the input string w = cad, begin with a tree
consisting of a single node labeled S, and the input pointer pointing to c, the first
symbol of w. S has only one production, so we use it to expand S and obtain the tree
shown below. The leftmost leaf, labeled c, matches the first symbol of input w, so
we advance the input pointer to a, the second symbol of w, and consider the next
leaf, labeled A.

S S S
AN N VRN
c A d I A d I A d

/ \

a b i

(a) (b) (¢)

Figure 2: Steps of top-down parse

Expand A using the first alternative A -> a b to obtain the above tree. We have a
match for the second input symbol, a, so we advance the input pointer to d, the third
input symbol, and compare d against the next leaf, labeled b. Since b does not match
d, we report failure and go back to A to see whether there is another alternative for
A that has not been tried, but that might produce a match.

In going back to A, reset the input pointer to position 2, the position it had when we
first came to A, which means that the procedure for A must store the input pointer
in a local variable.

The second alternative for A produces the tree of Fig2 (c). The leaf a matches the
second symbol of w and the leaf d matches the third symbol.

Since we have produced a parse tree for w, we halt and announce successful
completion of parsing.

Lecture notes

Compiler Construction

LL(1) Grammars:

Predictive parsers or recursive-descent parsers needing no backtracking, can be
constructed for a class of grammars called LL(1). The first “L” in LL(1) stands for
scanning the input from left to right, the second “L” for producing a leftmost
derivation, and the “1” for using one input symbol of lookahead at each step to make
parsing action decisions.

The class of LL(1) grammars can describe most programming constructs, but there
are important points to consider when writing a suitable grammar for the source
language. For example, left-recursive or ambiguous grammar cannot be LL(1).

Agrammar G is LL(2) if and only if whenever A ->a | B are two distinct productions
of G, the following conditions hold:

1. For no terminal a do both a and 3 derive strings beginning with a.

2. At most one of a and 3 can derive the empty string.

Predictive parsers can be constructed for LL(1) grammars since the proper
production to apply for a nonterminal can be selected by looking only at one input
symbol. Flow-of-control constructs, with their distinguishing keywords, generally
satisfy the LL(1) constraints. For instance, if we have the productions:

stmt — if (expr) stmit else stmi

| while (expr) stmt
| { stmi_list }

then the keywords if, while, and the symbol { tell us which alternative is the only
one that could possibly succeed parsing.

Lecture notes

Compiler Construction

Bottom-Up Parsing

It is convenient to describe parsing as the process of building parse trees, but the
front end usually carries out translation directly without building an explicit tree.

A bottom-up parse corresponds to the construction of a parse tree for an input string
beginning at the leaves (the bottom) and working up towards the root (the top).

— T x
F - (F) | id

For the expression grammar above, Figure 3 illustrates a bottom-up parse of the
token stream id * id, with respect to the expression grammar.

id + id o oad T + id T % I T E
| | VAR |
id F I id T % F T
| | | VRN
id id 1|" id]|" x I
id l|" id
id

Figure 3: A bottom-up parse for id * id

Lecture notes

