BCS 307 — Compiler Consfruction

Cr Hr. 3+1

Agendao

» |nfroduction to Compilers

» Compilation vs Interpretation
®» |mplementation strategies

» Compiler Structure

» Phases of Compilation

The point is...

» [Fxecute this!

int num= 4;

int factorial = 1;

while (num > 1) {
factorial = factorial*num;
num=num-1;

» How can computers execute thise Computers only know 1's and 0’s

Inferpreters & Compilers

» |nterpreter

®» A program that reads an source program and produces the results of executing
that program

» Compiler

» A program that translates a program from one language (the source) to another
(the target)

Common lssues

» Compilers and interpreters both must read the input — a stream of
characters — and “understand” it; analysis

while(k<length){<nl><tab>if(al[k]> 0) <nl> <tab>
<tab>{nPos++ ;}<nl> <tab>}

INnterpreter

» |nterpreter
» [Execution engine
®» Program execution interleaved with analysis
running = true;

while (running) {

analyze next statement;
execute that statement;
}

» sually need repeated analysis of statements (particularly in loops, functions)
» Buf. immediate execution, good debugging & interaction

Compiller

» Read and analyze entire program

» [ranslate to semantically equivalent program in
another language

®» Presumably easier o execute or more efficient
» Should “improve” the program in some fashion
» Offline process

» [radeoff: compile time overhead (preprocessing step)
VS execution performance

Processes Before and After
Compilation

SOUTCEe Prograln

» A program usually goes through

P reprocessor

some process before and after compilc

maodified source program

Compiler

'

target assembly program

Assembler

relocatable machine code

Linker/Loader

library files
relocatable object [iles

target machine code

Compilation vs Interpretation (1)

®» Not a clear-cut distinction

»Pyre Complilation

»The compiler tfranslates the high-level
source program info an equivalent
target program (typically in machine
language), and then goes away:

Source program ——> (Compiler)—‘r Target program

Input — » < Target program >—} Output

Compilation vs Interpretation (2)

»Pyre Interpretation

®|nterpreter stays around for the
execution of the program

»|nferpreter keeps control during
execution

Source prograii
Input —

Interpreter > —> Output

Compilation vs Interpretation (3)

®» |nferpretation:
» Greater flexibility
»Better diagnostics (error messages)

»Compilation
®» Beffer performance

Compilation vs Interpretation (4)

®»Some language implementations
INnclude a both compilation and
iInferpretation

»Compilation or simple pre-processing,
followed by inferpretation

Source program ——» (Translator >4} Intermediate program

Intermediate program

\\

Virtual machine)—:- Output
Input —

Implementation strategies (1)

®» Preprocessor
®»Removes comments and white space

» Groups characters into fokens (keywords,
identifiers, numbers, symbols)

»xpands abbreviations in the style of a
MACro assembler

®»|denftifies higher-level syntactic structures
(loops, subroutines)

Implementation strategies (2)

®»| ibrary of Routines and Linking

»Compiler uses a linker program to merge the
appropriate library of subroutines (e.g., math
functions such as sin, cos, log, etc.) into the

/ final program:

Fortran pmgrzuu4}< Compiler)4} Incomplete machine language

Incomplete machine

language T
l”"””

(Linker >4} Machine language program

Library routines

Implementation strategies (3)

»The C Preprocessor (conditional
compilation)
®Preprocessor deletes portions of code,

which allows several versions of a program
to be built from the same source

Source prograin 4:-(Preprocessor >4} Modified source program

Modified source program —h(Compiler)—} Assembly language

Dynamic and Just-in-Time Compilation

®|n some cases a programming system may
deliberately delay compilation until the last
possible moment.
»The Java language definition defines a machine-
independent intermediate form known as byte

code. Byte code is the standard format for
distribution of Java programs.

»The main C# compiler produces .NET Common
Language Runtime (CLR), which is then translated
info machine code immediately prior to execution.

Implementations

» Compilers
» C#,C, C++, Java efc.
» Sfrong need for optimization
» |nterpreters
» PERL, Python, Ruby, awk, sed, shells, Scheme/Lisp/ML, postscript/pdf, Java VM

» Parficularly effective if interpreter overhead is low

Hybrid Approaches (1)

» Classic example: Java
» Compile Java source to byte codes (.class files)

» Fxecution
»|nterpret byte codes directly, or

»Compile some or all byte codes to native code

» Just-In-Time compiler (JIT) — detect hot spots & compile on the
fly to native code

» \/ariations used for .NET& implementations of
dynamic and functional languages, e.g.,
JavaScript, Haskell

Hybrid Approaches (2)

» A typical hybrid compilation

S0rCe prograln

f

Translator

'

intermediate program —a

mput —e

WVirtual
Machine

= Output

Why Study Compilerse (1)

®» Become a better programmer
» |nsight info interaction between languages, compilers, and hardware
» Understanding of implementation techniques
» Know the stuff in the debugger

» Better intuition about what your code does

Why Study Compilerse (2)

» Compiler techniques are everywhere
» Parsing (little languages, interpreters, XML)
» Software tools (verifiers, checkers, ...)
» Database engines, query languages

» Al etc.: domain-specific languages

» Text processing
» Tex/LaTex -> dvi -> Postscript -> pdf
» Hardware: VHDL; model-checking tools

» Mathematics (Mathematica, Matlab)

Why Study Compilerse (3)

» Blend of theory and engineering
» Applications of theory to practice
» Parsing, scanning, static analysis

» Some very difficult problems (NP-hard or worse)

» Resource allocation, “optimization”, etc.

» Need to come up with good-enough approximations/heuristics

Why Study Compilerse (4)

®» |deas from many parts of CSE
» Al: Greedy algorithms, heuristic search
» Algorithms: graph algorithms, dynamic programming,
approximation algorithms

»Theory: Grammars, DFAs and PDAs, patfttern matching,
fixed-point algorithms

» Systems: Allocation & naming, synchronization,
locality

®» Architecture: pipelines, instruction set use, memory
hierarchy management

Why Study Compilerse (5)

®» You may write a compiler yourself

» You can write parsers and interpreters for little languages

» XML, Command languages, configuration files,, ...

Structure of a Compiler

» First approximation

®» Front end: analysis
®» Read source program and understand its structure and meaning
» Back end: synthesis

» Generate equivalent target language program

@ Front End =¥ Back End @

Compiler must...

»recognize legal programs (& complain about
illegal ones)

®» generate correct code

®» Mmanage storage of all variables/data
» qgree with OS & linker on target format

Front End = Back End

Implications

» Need some sort of Infermediate
Representation(s) (IR)

» Fronf end mayps source into IR

»Back end maps IR to target machine code

» Often multiple IRs — higher level af first, lower
level in later phases

Front End = Back End

Programming Environment Tools

»Tools in Infegrated in an Integrated

Development Environment (IDE)

Type

Unix examples

Editors

Vi, emacs

Pretty printers

ch, indent

Pre-processors (esp. macros)

cpp.md, watfor

Debuggers

adb, sdb, dbx., gdb

Style checkers

lint,purify

Module management make

Version management SCCS, rcs
Assemblers as

Link editors, loaders Id, Id-s0

Perusal tools More, less, od, nmn
Program cross-reference ctags

Structure of Compiller

» [nside a compiler, there are two main parts: analysis and synthesis.

» Analysis part breaks up the source program into constituent pieces and
Imposes a grammatical structure on them.

» |f it detects either syntactically ill formed or semantically unsound source code, it
must provide error messages.

» |t also collects information about the source program and stores it in a data
structure called a symbol table, which is passed along with the intermediate
representation to the synthesis part.

» Synthesis part constructs the desired target program from the intfermediate
representation and the information in the symbol table.

» The analysis part is often called the front end of the compiler; the synthesis
part is the back end.

Phases of Compilation

Character stream ~—

T [Sctanner (lexical ana,]}-'sis}j

——
e

T
HE:: [Parser (syntax analysis) j
—

"'\-\._____\--] . B
R Semantic analysis and]
on

Token stream

Parse tree

__— \intermediate code generati
Abstract syntax tree or =«

other intermediate form

—a Machine-independent
_— \code improvement {optional
Modified intermediate form —__

)

H:’f (Target code generation

Assembly or machine langnage, €«
or other target language

e Machine-specific
— \code improvement (optiona

1)

=

o

= N =

Modified target language

(Symbol table

_/

Compilation Overview - Scanning

®»Scanning is recognition of a regular
language, with DFA (deterministic finite
automaton).

»Djvides the program into "fokens”, the
smallest meaningful units.

® |t also saves complexity for later phases.

Compilation Overview - Parsing

®»Recognition of a confext-free
language, e.g., using Pushdown
Automaton (PDA)

»Parsing discovers the "context free”
stfructure of the program.

»|nformally, it finds the stfructure you can
describe with syntax diagrams.

Compilation Overview - Semantic analysis

»The discovery of meaning in the
program

»The compiler actually does what is called
static semantic analysis (atf compile fime).

»Things like array subscript out of bounds
can't be figured out until run time, so they
are part of the program'’s dynamic
semantics.

Compilation Overview - Intermediate
form

» Affer the program passes all checks,
INfermediate code may be
generated.
®|Fs are offen chosen for machine

Independence, ease of optimization, or
compactness.

»(Offen resemble machine code for some
Imaginary machine architecture.

»Some compilers move the code through
more than one IF.

Compilation Overview — Code
Optimation and Generation (1)

®»Taokes an infermediate-code
program and produces another one
that does the same thing faster, or in
less space

®»The optimization phase is optionadl

»Code generation phase produces
assembly language or relocatable
machine language (relative address
Is different from its absolute address)

Compilation Overview — Code
Optimation and Generation (2)

» Certain machine-specific optimizations
(use of special instructions or addressing
modes, etc.) may be performed during
arget code generation

»Symbol table: all phases rely on a symbol
table that keeps track of all the identifiers
INn the program.

tokens IR
» Parser

v

A

Front End ./scanner

® Scanner: Responsible for converting character stream to
token stream

B Also strips out white space, comments

» Parser. Reads token stfream; generates IR Source
language specified by a formal grammar

» There are some fools that can read the grammar and
generate scanner & parser

Scanner Example

» |[Nput fext
// this statement does very little
if x >=y)y =42;

» [oken Stream

IF | | LPAREN | | ID(x) || GEQ | | ID(y)

RPAREN | | ID(y) | | BECOMES | | INT(42) | | SCOLON

» Notes: fokens are atomic items, not character strings;

comments & whitespace are not tokens (not true for all
languages, cf. Python)

Parser Output (IR)

» Many different forms.

®» Fngineering fradeoffs have changed over time (e.g.,
memory is almost free these days).

» Common output from a parser is an abstract syntax tree.

» Fssenfial meaning of the program without the
syntactic noise.

Parser Example

» Token Stream Input » Abstract Syntax Tree

IF | | LPAREN | | ID(x) -

GEQ || ID(y) | | RPAREN

ID(y) | | BECOMES

INT(42) | | SCOLON

Static Semantic Analysis

» During or (more commonly) after parsing
» Type checking
» Check language requirements like proper declarations, etc.

®» Preliminary resource allocafion

» Collect other information needed by back-end code
generation

Back-Ena

» Responsibilities
» Translate IR into target machine code
» Should produce “good” code
»“‘good” = fast, compact, low power (pick some)

» Should use machine resources effectively
»Registers
® |nstructions & function units

»Memory hierarchy

Back-End Structure

» Typically split info two major parts
» “Opfimization” — code improvements
» Jsually works on lower-level IR than AST
» Code generation
®|nstruction selection & scheduling
»Register allocation

The Result

» |[nput
if (x >=1vy)

» Output

mov eax,[ebp+16]
cmp eax,[ebp-8]
jl L17

mov [ebp-8],42

L17/:

Some History (1)

» |950's
» FORTRAN | (1954) — competitive with hand-optimized code

» 1960’'s
» New languages: ALGOL, LISP, COBOL, SIMULA
» Formal notations for syntax, esp. BNF

» Fundamental implementation techniques
»Stack frames, recursive procedures, etc.

Some History (2)

» |970’s

» Syntax: formal methods for producing compiler front-
ends;

» | ate 1970’s, 1980’s

» New languages (functional; object-oriented -
Smalltalk)

» New architectures (RISC machines, parallel machines,
memory hierarchy)

Some History (3)

» |990s

» Technigues for compiling objects and classes,
efficiency in the presence of dynamic program
elements and short methods (Self, Smalltalk —JVMs,
etc.)

» Just-in-fime compilers (JITs)

» Compiler fechnology critical to effective use of new
hardware (RISC, Itanium, parallel machines, complex
memory hierarchies)

Some History (4)

» | st decade
» Compilation technigues in many new places.
» Software analysis, verification, security.

» Phased compilation — blurring the lines between “compile time”
and “runtime”.

» Dynamic languages — e.g., JavaScript, ...
» Compilers for parallel systems.

Course Project

» Compiler construction is best learnt by building it (af
least some parts).

» Course project should implement Lexical Analyser and
Syntax Analyser.

»You can go further ...

Programming Environments

» \Whatever you want!

» Byt you can use C# as you are already familiar with if,
and its quick way to develop programs.

» [For |IDE, you can use Visual Studio

Some Resources

» The GNU Compiler Collection (gcc) consists of open-
source compilers for C, C++, Fortran, Java, and other
languages.

®» Phoenix is a compiler-construction toolkit that provides
an integrated framework for building the program
analysis, code generation, and code optimization
phases of compilers.

Prerequisites

» Courses in:
» Data structures & algorithms

»| inked lists, dictionaries, frees, hash tables, Formal
languages & automata

»Regular expressions, finite automata, context-free
grammars, maybe a little parsing

» Machine organization
» Assembly-level programming

Grading Policy

» As devised by the university

Online Lectures

» | ectures will be delivered online on MS Teams

» | ecture notes will be available on the same

Communications

» At the end of each session, you will have fime for
qguestions.

®» You may also post your queries on Teams, or my email.

Books

®» |nclude:
» Aho, Lam, Sethi, Ullman, “*Compilers Principles, Tools and Techniques”, 2"9 edition

» Cooper & Torczon, Engineering a Compiler

Questions?

» Make sure you understand the concepts. Ask questions where find
problems.

» As the course proceeds, try implementing the concepts as we move on.

Upcoming Topics

® | anguage Basics

» | exical analysis — scanning

% Its helpful to read the first few chapters of the book beforehead.

>

