
Compiler Construction

Lecture notes 1

Compiler Construction

Lecture Notes

Compiler Construction

Lecture notes 2

Syntax Analysis

Agenda

Introduction

Error Handling

Context Free Grammar

Writing a Grammar

Compiler Construction

Lecture notes 3

Introduction

Every programming language has precise rules that prescribe the syntactic structure

of well-formed programs. In C, for example, a program is made up of functions, a

function out of declarations and statements, a statement out of expressions, and so

on. The syntax of programming language constructs can be specified by context-free

grammars.

Grammars

A grammar gives a precise syntactic specification of a programming language. An

efficient parser can be constructed from the grammar that determines the syntactic

structure of a source program.

As a side benefit, the parser-construction process can reveal syntactic ambiguities

and trouble spots that might have slipped through the initial design phase of a

language.

The structure imparted to a language by a properly designed grammar is useful for

translating source programs into correct object code and detection of errors.

A grammar allows a language to be evolved or developed iteratively, by adding new

constructs to perform new tasks. These new constructs can be integrated more easily

into an implementation that follows the grammatical structure of the language.

Compiler Construction

Lecture notes 4

Role of the Parser

The parser obtains a string of tokens from the lexical analyzer, and verifies that the

string of token names can be generated by the grammar for the source language.

Parser can report any syntax errors in input code and recover from commonly

occurring errors to continue processing the remainder of the program.

There are three general types of parsers for grammars: universal, top-down, and

bottom-up. Universal parsing methods are too inefficient to use in production

compilers.

The methods commonly used in compilers can be classified as being either top-down

or bottom-up. Top-down methods build parse trees from the top (root) to the bottom

(leaves), while bottom-up methods start from the leaves and work their way up to

the root. In either case, the input to the parser is scanned from left to right, one

symbol at a time.

Assume that the output of the parser is some representation of the parse tree for the

stream of tokens that comes from the lexical analyzer. In practice, there are a number

of tasks that might be conducted during parsing, such as collecting information about

various tokens into the symbol table, performing type checking and other kinds of

semantic analysis, and generating intermediate code.

Compiler Construction

Lecture notes 5

Representative Grammars

Constructs that begin with keywords like while or int, are relatively easy to parse,

because the keyword guides the choice of the grammar production that must be

applied to match the input. Expressions present more challenge, because of the

associativity and precedence of operators.

Associativity and precedence are captured in the following grammar for describing

expressions, terms, and factors. E represents expressions consisting of terms

separated by + signs, T represents terms consisting of factors separated by * signs,

and F represents factors that can be either parenthesized expressions or identifiers:

Figure 1: Simple expression grammar

Expression grammar above belongs to the class of LR grammars that are suitable for

bottom-up parsing. This grammar can be adapted to handle additional operators and

additional levels of precedence. However, it cannot be used for top-down parsing

because it is left recursive.

The following non-left-recursive variant of the expression grammar above will be

used for top-down parsing:

Figure 2: Non-left-recursive variant of the expression grammar

Compiler Construction

Lecture notes 6

The following grammar treats + and * alike, so it is useful for illustrating techniques

for handling ambiguities during parsing:

Figure 3: Simple grammar for the expression

Here, E represents expressions of all types. Grammar above permits more than one

parse tree for expressions like a + b * c.

Compiler Construction

Lecture notes 7

Syntax Error Handling

A compiler is expected to assist the programmer in locating and tracking down errors

that inevitably creep into programs.

Most programming language specifications do not describe how a compiler should

respond to errors; error handling is left to the compiler designer. Planning the error

handling from the start can simplify the structure of a compiler and improve its

handling of errors.

Common programming errors can occur at many different levels.

Lexical errors include misspellings of identifiers, keywords, or operators - e.g.,

missing quotes around text intended as a string.

Syntactic errors include misplaced semicolons or extra or missing braces; that is,

\{" or \}."

Semantic errors include type mismatches between operators and operands, e.g., the

return of a value in a method with result type void.

Logical errors can be anything from incorrect reasoning on the part of the

programmer to the use in a C program of the assignment operator = instead of the

comparison operator ==. The program containing = may be well formed; however,

it may not reflect the programmer's intent.

Several parsing methods, such as the LL and LR methods, detect an error as soon as

possible; that is, when the stream of tokens from the lexical analyzer cannot be

parsed further according to the grammar for the language. More precisely, they have

the viable-prefix property, meaning that they detect that an error has occurred as

soon as they see a prefix of the input that cannot be completed to form a string in the

language.

Error recovery during parsing is also important because many errors appear

syntactic, and are exposed when parsing cannot continue. A few semantic errors,

such as type mismatches, can also be detected efficiently; however, accurate

detection of semantic and logical errors at compile time is in general a difficult task.

Compiler Construction

Lecture notes 8

The error handler in a parser has goals that are simple to state but challenging to

implement:

Report the presence of errors clearly and accurately.

Recover from each error quickly enough to detect subsequent errors.

Add minimal overhead to the processing of correct programs.

At the very least, error handler must report the place in the source program where an

error is detected, because there is a good chance that the actual error occurred within

the previous few tokens. A common strategy is to print corresponding line with a

pointer to the position at which an error is detected.

Error-Recovery Strategies

The simplest approach is for the parser to quit with an informative error message

when it detects the first error.

Additional errors are often uncovered if the parser can restore itself to a state where

processing of the input can continue with next token. If errors pile up, it is better for

the compiler to give up after exceeding some error limit than to produce a big list of

errors.

Panic-Mode Recovery

With this method, on discovering an error, the parser discards input symbols one at

a time until one of a designated set of synchronizing tokens is found.

The synchronizing tokens are usually delimiters, such as semicolon or }. Compiler

designer must select the synchronizing tokens appropriate for the source language.

While panic-mode correction often skips a considerable amount of input without

checking it for additional errors, it has the advantage of simplicity, and is guaranteed

not to go into an infinite loop.

Compiler Construction

Lecture notes 9

Phrase-Level Recovery

On discovering an error, a parser may perform local correction on the remaining

input; that is, it may replace a prefix of the remaining input by some string that allows

the parser to continue. A typical local correction is to replace a comma by a

semicolon, delete an extraneous semicolon, or insert a missing semicolon.

Global Correction

There are algorithms for choosing a minimal sequence of changes to obtain a

globally least-cost correction. Given an incorrect input string x and grammar G,

these algorithms will find a parse tree for a related string y, such that the number of

insertions, deletions, and changes of tokens required to transform x into y is as small

as possible.

These methods are in general too costly to implement in terms of time and space, so

these techniques are currently only of theoretical interest. A closest correct program

may not be what the programmer had in mind.

Compiler Construction

Lecture notes 10

Context-Free Grammars

Grammars describe the syntax of programming language constructs like expressions

and statements. Using a syntactic variable stmt to denote statements and variable

expr to denote expressions, the production

Figure 4: Grammar for conditional statement production

specifies the structure of this form of conditional statement. Other productions then

define precisely what an expr is and what else a stmt can be.

Compiler Construction

Lecture notes 11

Formal Definition of Context-Free Grammar

A context-free grammar (grammar for short) consists of terminals, nonterminals, a

start symbol, and productions.

1. Terminals are the basic symbols from which strings are formed. The term “token

name" is a synonym for “terminal". We will use word “token" for terminal when it

is clear that we are talking about just the token name.

2. Nonterminals are syntactic variables that denote sets of strings. stmt and expr are

nonterminals. The sets of strings denoted by nonterminals help define the language

generated by the grammar. Nonterminals impose a hierarchical structure on the

language that is key to syntax analysis and translation.

3. One nonterminal is marked as start symbol, and the set of strings it denotes is the

language generated by the grammar. Productions of start symbol are listed first.

4. Productions of a grammar specify the manner in which the terminals and

nonterminals can be combined to form strings. Each production consists of:

(a) A nonterminal called the head or left side of the production; this production

defines some of the strings denoted by the head.

(b) The symbol !. Sometimes ::= has been used in place of the arrow.

(c) A body or right side consisting of zero or more terminals and non-terminals. The

components of the body describe one way in which strings of the nonterminal at the

head can be constructed.

Compiler Construction

Lecture notes 12

Example: The grammar below defines simple arithmetic expressions. In this

grammar, the terminal symbols are id + - * / ()

The nonterminal symbols are expression, term and factor, and expression is the start

symbol

Figure 5: Grammar for simple arithmetic expressions

Compiler Construction

Lecture notes 13

Notational Conventions

To avoid having to state that “these are the terminals," “these are nonterminals,” and

so on, the following notational conventions for grammars will be used:

1. The terminals:

(a) Lowercase letters early in the alphabet, such as a, b, c.

(b) Operator symbols such as +, * and so on.

(c) Punctuation symbols such as parentheses, comma, and so on.

(d) The digits 0, 1, …, 9.

(e) Boldface strings such as id, if, each of which representing single terminal

symbol.

2. The nonterminals:

(a) Uppercase letters early in the alphabet, such as A, B, C.

(b) The letter S is usually the start symbol.

(c) Lowercase, italic names such as expr or stmt.

(d) In programming constructs, uppercase letters may be used to represent

nonterminals for the constructs. For example, nonterminals for expressions,

terms, and factors are often represented by E, T, and F, respectively.

3. Uppercase letters late in the alphabet, such as X, Y, Z, represent grammar symbols;

either nonterminals or terminals.

4. Lowercase letters like u, v, …, z, represent strings of terminals.

5. Lowercase Greek letters, α, β for example, represent strings of grammar symbols.

6. A set of productions A -> α1, A -> α2, … A -> αk with a common head A (or A-

productions), may be written A -> α1| α2 | … | αk

7. Unless stated otherwise, the head of the first production is the start symbol.

Compiler Construction

Lecture notes 14

Example : Using these conventions, the grammar of the expressions can be rewritten

concisely as:

The notational conventions show that E, T, and F are nonterminals, with E the start

symbol. The remaining symbols are terminals.

Compiler Construction

Lecture notes 15

Derivations

Beginning with the start symbol, each step replaces a nonterminal by the body of

one of its productions. This derivational view corresponds to the top-down

construction of a parse tree. Bottom-up parsing is related to a class of derivations

known as “rightmost” derivations, in which the rightmost nonterminal is rewritten

at each step.

For example, consider the following grammar, with a single nonterminal E, which

adds a production E - E to the grammar :

The production E - E signifies that if E denotes an expression, then – E must also

denote an expression. The replacement of a single E by - E will be described by:

read as “E derives -E.” The production E (E) can be applied to replace any

instance of E in any string of grammar symbols by (E), e.g., E * E (E) * E or

E * E E * (E). We can take a single E and repeatedly apply productions in

any order to get a sequence of replacements. For example,

Such a sequence of replacements is called a derivation of -(id) from E. This

derivation is a proof that the string -(id) is one particular instance of an expression.

A sentence of G is a sentential form with no nonterminals. The language generated

by a grammar is its set of sentences. Thus, a string of terminals w is in L(G), the

language generated by G, if and only if w is a sentence of G (or S ->* w). A language

that can be generated by a grammar is said to be a context-free language. If two

grammars generate the same language, the grammars are said to be equivalent.

(See page 200 of the book)

Compiler Construction

Lecture notes 16

Parse Trees and Derivations

A parse tree is a graphical representation of a derivation that filters out the order in

which productions are applied to replace nonterminals. Each interior node of a parse

tree represents the application of a production. The interior node is labeled with the

nonterminal A in the head of the production; the children of the node are labeled,

from left to right, by the symbols in the body of the production by which this A was

replaced during the derivation.

Figure 6: Parse tree for -(id + id)

In the first step of the derivation, E -> -E. To model this step, add two children,

labeled - and E, to the root E of the initial tree. The result is the second tree.

In the second step of the derivation, -E -> - (E). This requires three children, labeled

(, E, and), to the leaf labeled E of the second tree, to obtain the third tree with yield

- (E). Continuing this process results in the complete parse tree for the expression.

For leftmost or a rightmost derivation, there is a one-to-one relationship between

parse trees and either leftmost or rightmost derivations. Both leftmost and rightmost

derivations pick a particular order for replacing symbols in. Every parse tree has

associated with it a unique leftmost and a unique rightmost derivation.

Compiler Construction

Lecture notes 17

Derivation for the expression – (id + id)

Figure 7: Sequence of parse trees for the derivation

Compiler Construction

Lecture notes 18

Ambiguity

A grammar that produces more than one parse tree for some sentence is said to be

ambiguous. Put another way, an ambiguous grammar is one that produces more than

one leftmost derivation or more than one rightmost derivation for the same sentence.

Example : The arithmetic expression grammar

permits two distinct leftmost derivations for the sentence id + id * id:

Corresponding parse trees are shown in figure below:

Figure 8: Two parse trees for id+id*id with respect to the grammar above

The parse tree of Figure 8(a) reflects the commonly assumed precedence of + and *,

while the tree of Figure 8(b) does not. The operator * has higher precedence than +,

as an expression like a + b * c is evaluated as a + (b * c), rather than as (a + b) * c.

Compiler Construction

Lecture notes 19

Most parsers require the grammar to be unambiguous, for if it is not, we cannot

uniquely determine which parse tree to select for a sentence. In other cases, it is

convenient to use carefully chosen ambiguous grammars, together with

disambiguating rules that “throw away" undesirable parse trees, leaving only one

tree for each sentence.

Compiler Construction

Lecture notes 20

Verifying the Language Generated by a Grammar

Verifying confirms that a given set of productions generates a particular language.

Troublesome constructs can be studied by writing a concise, abstract grammar and

studying the language that it generates.

A proof that a grammar G generates a language L has two parts: show that every

string generated by G is in L, and conversely that every string in L can indeed be

generated by G.

Compiler Construction

Lecture notes 21

Context-Free Grammars Versus Regular Expressions

Grammars are a more powerful notation than regular expressions. Every construct

that can be described by a regular expression can be described by a grammar, but

not vice-versa. That is, every regular language is a context-free language, but not

vice-versa.

The regular expression (a|b)*abb and the grammar

recognize the same language, the set of strings of a's and b's ending in abb.

Finite automata cannot count," meaning that a finnite automaton cannot accept a

language like {anbn | n>1=1} that would require it to keep count of the number of a's

before it sees the b's.

Compiler Construction

Lecture notes 22

Writing a Grammar

Grammars are capable of describing most, but not all, of the syntax of programming

languages. For instance, the requirement that identifiers be declared before they are

used, cannot be described by a context-free grammar. Therefore, the sequences of

tokens accepted by a parser form a superset of the programming language;

subsequent phases of the compiler must analyze the output of the parser to ensure

compliance with the language rules not checked by the parser.

Lexical Versus Syntactic Analysis

Everything that can be described by a regular expression can also be described by a

grammar. Then why use regular expressions to define the lexical syntax of a

language?

There are several reasons.

1. Separating the syntactic structure of a language into lexical and non-lexical parts

provides a convenient way of modularizing the front end of a compiler into two

manageable-sized components.

2. The lexical rules of a language are frequently quite simple, and to describe them

we do not need a notation as powerful as grammars.

3. Regular expressions generally provide a more concise and easier-to-under-stand

notation for tokens than grammars.

4. More efficient lexical analyzers can be constructed automatically from regular

expressions than from arbitrary grammars.

There are no guidelines as to what to put into the lexical rules, as opposed to the

syntactic rules. Regular expressions are most useful for describing the structure of

constructs such as identifiers, constants, keywords, and white space. Grammars, on

the other hand, are most useful for describing nested structures such as balanced

parentheses, matching begin-end's, corresponding if-then-else's, and so on. These

nested structures cannot be described by regular expressions.

Compiler Construction

Lecture notes 23

Eliminating Ambiguity

Sometimes an ambiguous grammar can be rewritten to eliminate the ambiguity. As

an example, eliminate the ambiguity from the following “dangling-else" grammar:

Here “other" stands for any other statement. According to this grammar, the

compound conditional statement

if E1 then S1 else if E2 then S2 else S3

Figure 9: Parse tree for a conditional statement

has the parse tree shown in Fig 9, the Grammar is ambiguous since the string

if E1 then if E2 then S1 else S2 has the two parse trees shown in Fig 10.

Figure 10: Two parse trees for an ambiguous sentence

Compiler Construction

Lecture notes 24

In all programming languages with conditional statements of this form, the first

parse tree is preferred. The general rule is, “Match each else with the closest

unmatched then”.

The dangling-else grammar can be rewritten as the following unambiguous

grammar. A statement appearing between a then and an else must be “matched”; that

is, the interior statement must not end with an unmatched or open then. A matched

statement is either an if-then-else statement containing no open statements or it is

any other kind of unconditional statement. This grammar generates the same strings

as the dangling-else grammar but it allows only one parsing for string, the one that

associates each else with the closest previous unmatched then.

Figure 11: Unambiguous grammar for if-then-else statements

Compiler Construction

Lecture notes 25

Elimination of Left Recursion

A grammar is left recursive if it has a nonterminal A such that there is a derivation

A ->+ Aα for some string α. Top-down parsing methods cannot handle left-recursive

grammars, so a transformation is needed to eliminate left recursion.

Example : The non-left-recursive expression grammar

is obtained by eliminating immediate left recursion from the expression grammar.

The left-recursive pair of productions E -> E + T | T are replaced by E -> T E’ and

E’ -> + T E’ | £. The new productions for T and T’ are obtained similarly by

eliminating immediate left recursion.

Immediate left recursion can be eliminated by the following technique, which works

for any number of A-productions. First, group the productions as

where no βi begins with an A. Then, replace the A-productions by

The nonterminal A generates the same strings as before but is no longer left

recursive. This procedure eliminates all left recursion from the A and A0 productions

(provided no αi is £), but it does not eliminate left recursion involving derivations of

two or more steps. For example, consider the grammar

Compiler Construction

Lecture notes 26

The nonterminal S is left recursive because S -> Aa -> Sda, but it is not immediately

left recursive.

Compiler Construction

Lecture notes 27

Left Factoring

Left factoring is a grammar transformation that is useful for producing a grammar

suitable for predictive, or top-down, parsing. When the choice between two

alternative A-productions is not clear, we may be able to rewrite the productions to

defer the decision until enough of the input has been seen that we can make the right

choice.

For example, if we have the two productions

on seeing the input if, we cannot immediately tell which production to choose to

expand stmt. In general, if A ->αβ1 | αβ2 are two A-productions, and the input begins

with a nonempty string derived from α, we do not know whether to expand A to

αβ1 | αβ2. However, this decision can be deferred by expanding A to

αA’. After seeing the input derived from α, expand A’ to β1 or to β2. That is, left-

factored, the original productions become

Compiler Construction

Lecture notes 28

Non-Context-Free Language Constructs

A few syntactic constructs found in typical programming languages cannot be

specified using grammars alone.

Example: The problem of checking that identifiers are declared before they are used

in a program. The language consists of strings of the form wcw, where the first w

represents the declaration of an identifier w, c represents any program fragment, and

the second w represents the use of the identifier.

Example : The non-context-free language in this example abstracts the problem of

checking that the number of formal parameters in the declaration of a function agrees

with the number of actual parameters in a use of the function. This language is not

context free.

Typical syntax of function declarations and uses does not concern itself with

counting the number of parameters. For example, a function call in C-like language

might be specified by:

with suitable productions for expr. Checking that the number of parameters in a call

is correct is done during the semantic-analysis phase.

