Compiler Construction

Compiler Construction

Lecture Notes

Lecture notes

Compiler Construction

Semantic Analysis and Symbol Table

Lecture notes

Compiler Construction

Semantics

Semantics of a language provide meaning to its constructs. Semantics help interpret
symbols, their types, and their relations with each other. Semantic analysis decides
whether the syntax structure of the source program derives any meaning or not.

CFG + semantic rules = Syntax Directed Definitions
For example: int a = “value”;

Is not an error in lexical and syntax analysis phases, as it is lexically and structurally
correct, but it should generate a semantic error as the type of the assignment differs.
These rules are set by the grammar of the language and evaluated in semantic
analysis. Semantic analysis performs following tasks:

» Scope resolution
> Type checking
» Array-bound checking

Semantic Errors
Some of the semantics errors that the semantic analyzer recognizes:

» Type mismatch

» Undeclared variable

> Reserved identifier misuse.

» Multiple declaration of variable in a scope.
» Accessing an out of scope variable.

» Actual and formal parameter mismatch.

Lecture notes

Compiler Construction

Attribute Grammar

Attribute grammar is a special context-free grammar with some additional attributes
appended to one or more of its non-terminals to provide context-sensitive
information. Each attribute has well-defined domain of values, such as integer, float,
character, string, and expressions.

Attribute grammar is a medium to provide semantics to the context-free grammar
and it can help specify the syntax and semantics of a programming language.
Attribute grammar (when viewed as a parse-tree) can pass values or information
among the nodes of a tree.

Example:
E — E+T { E.value = E.value + T.value }

The right part of the CFG contains the semantic rules that specify how the grammar
should be interpreted. Here, the values of non-terminals E and T are added together
and the result is copied to the non-terminal E.

Semantic attributes may be assigned to their values from their domain at the time of
parsing and evaluated at the time of assignment or conditions.

Lecture notes

Compiler Construction

Program Semantics and Symbol Table

Information from the symbol-table entry is needed for semantic analysis and code
generation.

position = initial + rate * 60
For the above expressions, the tokens generated will be:
<id, 1> <=> <id, 2> <+> <id, 3> <*> <int_const, 4>

Here position for example, is a lexeme that would be mapped into a token <id, 1>
where id is an abstract symbol standing for identifier and 1 points to the symbol-
table entry for position.

The symbol-table entries generated for the above expression should be:

Table 1. Symbol-table for the expression above

1 position | float

2 initial | float

3 rate int

4 60 inst_const

The semantic analyzer uses the information in the symbol table to check the source
program for semantic consistency with the language definition. It also gathers type
information and saves it in the symbol table, for subsequent use during intermediate-
code generation.

An important part of semantic analysis is type checking, where the compiler checks
that each operator has matching operands. For example, many programming
language definitions require an array index to be an integer; the compiler must report
an error if a floating-point number is used to index an array.

Lecture notes

position = initial + rate * 60

| Lexical Analyzer |

i

(id, 1) (=) (id, 2) {+, (id, 3} (=) (60)

|

| Svntax Analvzer |

-

{id, l::-'"-

TR D i
(id, 27

s —

- —

(id, 3} 60

|

Semantic Analyzer

-1

(id, 1} o
(id, 2§

(id, 37" inttofloat

I
60

Intermediate Code Generator

inttofloat (60)
t2 id3 * t1

t3 id2 + t2

idl = t3

t1

Figure 1: Translation of the expression code above in the front-end

Symbol-Table Management:

Compiler records the variable names used in the source program and collect
information about various attributes of each name. These attributes may provide
information about the storage allocated for a name, its type, its scope, and in the case
of procedure names, such things as the number and types of its arguments, the
method of passing each argument (for example, by value or by reference), and the

type returned.

The symbol table is a data structure containing a record for each variable name, with
fields for the attributes of the name. The data structure should be designed to allow
the compiler to find the record for each name quickly and to store or retrieve data

from that record quickly.

Lecture notes

Compiler Construction

Compiler Construction

Symbol Table

Symbol tables are data structures that hold information about identifiers. Information
Is put into the symbol table when the declaration of an identifier is analyzed. A
semantic action gets information from the symbol table when the identifier is
subsequently used, for example, as a factor in an expression.

The information is collected incrementally by the analysis phases of a compiler and
used by the synthesis phases to generate the target code. Entries in the symbol table
contain information about an identifier such as its lexeme, its type, its scope, and any
other relevant information.

The scope of a declaration is the portion of a program to which the declaration
applies. You can implement scopes by setting up a separate symbol table for each
scope. A program block with declarations will have its own symbol table with an
entry for each declaration in the block. This approach also works for other constructs
that set up scopes; for example, a class would have its own table, with an entry for
each field and method.

To implement Symbol Table, we can create a new class SymbolTable and use a
HashTable to store the symbols. Each entry in the table is a key-value pair, with key
as the token lexeme and value as the symbol class object. The symbol class object
contains the information about the lexeme including its type, scope and any other
relevant information.

The SymbolTable class also contains methods to put method to insert a new symbol
into the table and get method to retrieve a symbol from the table.

Lecture notes

Compiler Construction

The Use of Symbol Tables

The role of a symbol table is to pass information from declarations to uses. A
semantic action “puts” information about identifier x into the symbol table, when
the declaration of x is analyzed. Subsequently, a semantic action associated with a
production such as factor -> id “gets” information about the identifier from the
symbol table.

Lecture notes

