
Flow Control Instructions

Computer Organization and Assembly Language

9/15/2021Computer Organization and Assembly Language

1

Agenda

 Introduction

 Conditional Jumps

 JMP instruction

 Branching Structures

 Loops

9/15/2021Computer Organization and Assembly Language

2

Flow Control

The jump and loop instructions transfer control to

another part of program.

This transfer can be unconditional or conditional

depending on a particular combination of

status flag settings.

9/15/2021Computer Organization and Assembly Language

3

Conditional Jumps

JNZ is a conditional jump instruction. The syntax

is

Jxxx destination_label

9/15/2021Computer Organization and Assembly Language

4

Conditional Jumps

 If the condition for the jump is true, the next

instruction to be executed is the one at

destination_label, which may precede or follow

the jump instruction.

 If the condition is false, the instruction

Immediately following the jump executed.

For JNZ, the condition Is that the result of the

previous operation is not zero

9/15/2021Computer Organization and Assembly Language

5

Conditional Jumps
 To demonstrate the jump instructions the program below displays the IBM character set.

.model small

.stack 100h

.code

MAIN PROC

MOV AH, 2

MOV CX, 256 ; Loop counter, number of characters to display

MOV DL, 0 ; Contains ASCII code of character to display, starting with 0

DISPLAY_LOOP:

INT 21H ; Output the character in DL

INC DL ; Update to next character

DEC CX ; Decrement loop counter

JNZ DISPLAY_LOOP ; Repeat the statements if CX is not 0

MAIN ENDP

END MAIN

9/15/2021Computer Organization and Assembly Language

6

Conditional Jumps

 To display the characters, a loop is used (JNZ DISPLAY_LOOP)
instruction.

 Before entering the loop, AH Is initialized to 2 (single character
display) and DL is set to 0, the initial ASCII code.

 CX Is the loop counter; it is set to 256 before entering the loop
and is decremented after each character is displayed.

 The instruction that controls the loop is JNZ (Jump if Not Zero).

 If the result of the preceding Instruction (DEC CX) is not zero,
the JNZ instruction transfers control to the instruction at label
DISPLAY_LOOP.

 When CX finally contains 0, the loop ends.

9/15/2021Computer Organization and Assembly Language

7

CPU Implementing a Conditional Jump

 To implement a conditional jump, the CPU looks at the FLAGS
register, which reflects the result of last instruction.

 If the condition for the jump (a combination of status FLAGS
settings) are true, the CPU adjusts the IP to point to the
destination label, so that the instruction at this label will be
done next.

 If the jump condition is false, then IP is not altered; which skips
the jump and executes the next instruction in code.

 In last example, CPU executes JNZ DISPLAY_LOOP by
checking ZF.

 If ZF = 0, control transfers to PRINT_LOOP; if ZF = 1, the program
goes on to execute following instruction.

9/15/2021Computer Organization and Assembly Language

8

Conditional Jump Categories

 There are three categories;

 (1) signed jumps are used when a signed
interpretation is being given to results,

 (2) the unsigned jumps are used for an unsigned
interpretation, and

 (3) the single-flag jumps, which operate on
settings/of individual flags.

 The jump instructions themselves do not affect the
flags.

9/15/2021Computer Organization and Assembly Language

9

Signed Jumps

Given below are signed jumps

9/15/2021Computer Organization and Assembly Language

10

Unsigned Conditional Jumps

Given below are unsigned jumps

9/15/2021Computer Organization and Assembly Language

11

Single-Flag Jumps

Given below are Single-Flag jumps

9/15/2021Computer Organization and Assembly Language

12

CMP Instruction

 The jump condition is often provided by the CMP (compare)
instruction.

 It has the form

CMP destination, source

 This instruction compares destination and source by
computing destination contents minus source contents.

 The result is not stored, but the flags are affected.

 The operands of CMP may not both be memory locations.

 Destination may not be a constant.

 CMP is like SUB, except that destination is not changed.

9/15/2021Computer Organization and Assembly Language

13

CMP Example

For following instructions:

CMP AX, BX

JG BELOW

where AX = 7FFFh, and BX = 0001.

The result of CMP AX,BX is 7ffFh - 0001h = 7FFEh.

The jump condition for JG Is satisfied (see the
jump tables), because ZF = SF = OF = 0, so
control transfers to label BELOW.

9/15/2021Computer Organization and Assembly Language

14

Interpreting Conditional Jumps

 In the last example, we determined by looking at the flags
after CMP was executed that control transfers to label
BELOW.

 This is how the CPU Implements a conditional jump.

 But a programmer can just use the name of the jump to
decide if control transfers to the destination label. In the
following,

CMP AX,BX

JG BELOW

 If AX is greater than BX (in a signed sense), then JG (jump if
greater than) transfers to BELOW.

9/15/2021Computer Organization and Assembly Language

15

Conditional Jump without CMP

The conditional jump can also work with other

instructions apart from CMP. For example:

DEC AX

JZ NEXT

 If the contents of AX become 0, control transfers

to NEXT.

9/15/2021Computer Organization and Assembly Language

16

Signed Versus Unsigned Jumps

 Each of the signed jumps corresponds to an analogous unsigned jump;
for example, the signed jump JG and the unsigned jump JA.

 The table above on jumps shows that these jumps operate on different
flags: the signed jumps operate on ZF, SF, and OF, while the unsigned
jumps operate on ZF and CF.

 Using the wrong kind of jump can lead to incorrect results.

 Example: suppose we're giving a signed interpretation. If AX = 7FFFh, BX
= 8000h, and we execute

CMP AX,BX

JA BELOW

 Even though 7FFFh > 8000h in a signed sense, the program does jump
to BELOW, because 7FFFh < 8000h in an unsigned sense, and we are
using the unsigned jump JA.

9/15/2021Computer Organization and Assembly Language

17

Unconditional Jump - JMP Instruction

The JMP (jump) instruction causes a

unconditional transfer of control. The syntax is

JMP destination

where destination is usually a label in the same

segment as the JMP itself.

JMP can be used to get around the range

restriction of a conditional jump.

9/15/2021Computer Organization and Assembly Language

18

Branching Structures

Branching structures enable a program to take

different paths, depending on conditions.

9/15/2021Computer Organization and Assembly Language

19

Branching Structures - IF-THEN

 The IF-THEN structure may be- expressed in pseudocode as
follows:

IF condition is true

THEN

execute true-branch statements

END_IF

 The condition is an expression that is true or false.

 If the condition is true, the true branch statement is executed.

 lf the condition is false, nothing is done.

9/15/2021Computer Organization and Assembly Language

20

Branching Structures - Example

Replace the number in AX by its absolute value.

CMP AX, 0 ; AX< 0

JNL ENDIF ;no, exit

NEG AX

ENDIF
 The condition AX < 0 is expressed by CMP AX,O.

 If AX is not less than 0, nothing is done, so use a JNL (jump if not less) to jump
around the NEG AX.

 If condition AX < 0 is true, the program goes on to execute NEG AX.

9/15/2021Computer Organization and Assembly Language

21

Branching Structures - IF-THEN-ELSE

 The IF-THEN structure may be expressed in
pseudocode as follows:

IF condition is true

THEN

execute true-branch statements

END_IF

ELSE

execute false-branch statements

END_ELSE

9/15/2021Computer Organization and Assembly Language

22

Branching Structures - IF-THEN-ELSE -
Example

Example: Register AL and BL both contain a value.
Display the smaller of these values.

Pseudocode:

IF AL <= BL

THEN

Display the character in AL

ELSE

display the character in BL

END - IF

9/15/2021Computer Organization and Assembly Language

23

Branching Structures - IF-THEN-ELSE -
Example

 Assembly code:

MOV AL, ‘x’

MOV BL, ‘y’

CMP AL, BL

JNBE ELSE_PART

MOV DL, AL ;IF BODY

JMP DISPLAY

ELSE_PART:

MOV DL, BL ; ELSE BODY

DISPLAY:

MOV AH, 2

INT 21H

9/15/2021Computer Organization and Assembly Language

24

Branches with Compound Conditions

 The branching condition can also take multiple
conditions

condition_1 AND condition_2

where condition_1 and condition_2 are either true
or false.

An AND condition is true if and only if condition_1
and condition_2 are both true.

 Likewise, if either condition is false, then the whole
thing is false.

9/15/2021Computer Organization and Assembly Language

25

AND Conditions - Example

 Example: Read a character, and if it's an uppercase letter, display it.

 MOV AH, 1 ; To read a character

 INT 21H

 ;if ('A' <= char> and (char <= 'Z')

 CMP AL, ‘A’

 JNGE END_IF

 CMP AL, ‘Z’

 JNLE END_IF

 ; THEN DISPLAY THE CHARACTER

 MOV DL, AL

 MOV AH, 2

 INT 21H

 END_IF:

9/15/2021Computer Organization and Assembly Language

26

OR Conditions

Condition_1 OR condition_2 is true if at least one

of the conditions is true; it is only false when both

conditions are false.

Example: Read a character. If it's "y" or "Y",

display it; otherwise, terminate the program.

9/15/2021Computer Organization and Assembly Language

27

OR Condition Example

 Code:

MOV AH, 1 ;Input character

INT 21H

CMP AL, ‘y’

JE THEN_PART

CMP AL, ‘Y’

JE THEN_PART

JMP END_IF ;both false, terminate

THEN_PART:

MOV AH, 2

MOV DL, AL

INT 21H

END_IF:

9/15/2021Computer Organization and Assembly Language

28

Looping Structures

 A loop is a sequence of instructions that is repeated.

 The number of times to repeat may be known in advance, or
It may depend on conditions.

 FOR LOOP

 This is a loop structure in which the loop statements are
repeated a known number of times (a count-controlled loop).

 Pseudocode:

FOR loop_count_times DO

Statements

END_FOR

9/15/2021Computer Organization and Assembly Language

29

LOOP Instruction

 The LOOP instruction can be used to implement a for loop.

 It has the form

LOOP destination_label

 The counter for the loop is the register CX which is initialized to
loop_count.

 Execution of the LOOP Instruction causes CX to be
decremented automatically.

 If CX is not 0, control transfers to destination_label.

 If CX is 0, the next instruction after LOOP is executed.

 Destinatlon_label must precede the LOOP instruction by no
more than 126 bytes.

9/15/2021Computer Organization and Assembly Language

30

FOR LOOP Example

Example: Write a count-controlled loop to
display a row of 20 stars.

MOV CX, 20

MOV AH, 2

MOV DL, ‘*’

REPEAT:

INT 21H

LOOP REPEAT

9/15/2021Computer Organization and Assembly Language

31

WHILE LOOP

Pseudocode:

WHILE condition DO

Statements

END WHILE

The condition is checked at the top of the loop.

 If true, the statements are executed; if false, the

loop terminates.

9/15/2021Computer Organization and Assembly Language

32

WHILE LOOP Example

 Example: Write some code to count the number of characters in an input line.

MOV DX, 0 ; char counter

MOV AH, 1

INT 21H

WHILE_REPEAT:

CMP AL, 0DH ;0DH = Carriage Return

JE END_WHILE

INC DX

INT 21H

JMP WHILE_REPEAT

END_WHILE:

9/15/2021Computer Organization and Assembly Language

33

