
The Stack and Procedures

Computer Organization and Assembly Language

9/15/2021Computer Organization and Assembly Language

1



Contents

 The Stack

 Stack Operations

 Stack Application

 Procedures

9/15/2021Computer Organization and Assembly Language

2



Overview

The stack segment of a program is used for 

temporary storage of data and addresses.

A stack is one-dimensional data structure. 

 Items are added and removed from one end of 

the structure; that is, it is processed in a "last-in, 

first-out" manner. 

The most recent addition to the stack is called 

the top of the stack.

9/15/2021Computer Organization and Assembly Language

3



Stack

 A program must set aside a block of memory to hold the 
stack.

We declared a stack segment in the code as,

 .STACK 100H

When the program is loaded in memory, SS will contain 
the segment number of the stack segment. 

 For the preceding stack declaration, SP (stack pointer) is 
initialized to 100h, which represents empty stack.

When the stack is not empty, SP contains the offset 
address of the top of the stack.

9/15/2021Computer Organization and Assembly Language

4



PUSH and PUSHF

 To add a new data to the stack we PUSH it on stack as

 PUSH source

 where source is a 16-bit register or memory word. For 
example,

 PUSH AX

 PUSH execution does the following:

 1. SP is decreased by 2

 2. A copy of the source content is moved to the address 
specified by SS:SP. 

 The instruction PUSHF, which has no operands, pushes the 
contents of the FLAGS register onto the stack.

9/15/2021Computer Organization and Assembly Language

5



SP Register

 Initially, SP contains the offset address of the memory 

location immediately following the stack segment; the 

first PUSH decreases SP by 2, making it point to the last 

word in the stack segment. 

9/15/2021Computer Organization and Assembly Language

6



SP After PUSH Operations

 Since a PUSH decreases SP, the stack grows 

toward the beginning of memory.

9/15/2021Computer Organization and Assembly Language

7



POP and POPF

POP removes the top item from the stack as:

POP destination

where destination is a 16-bit register (except IP) or 
memory word. For example,

POP BX

Executing POP causes this to happen:

1. The content of SS:SP (the top of the stack) is 
moved to the destination.

2. SP is Increased by 2.

9/15/2021Computer Organization and Assembly Language

8



POP and POPF

 The Instruction POPF pops the top of the stack into the 
FLAGS register.

 There is no effect of PUSH, PUSHF, POP, POPF on the 
flags.

 PUSH and POP are word operations, so a byte Instruction 
such as

PUSH DL

 is illegal. 

 So is a push of immediate data illegal in 8086, such as

PUSH 2

9/15/2021Computer Organization and Assembly Language

9



Stack After POP CX

The figure below shows stack after

POP CX

9/15/2021Computer Organization and Assembly Language

10



OS and Stack

The operating system also uses the stack.

For example, to implement the INT 21h functions, 
DOS saves any registers it uses on the stack and 
restores them when the interrupt routine is 
completed. 

This does not cause a problem for the user since 
any values DOS pushes onto the stack are 
popped off by DOS before it returns control to 
the program.

9/15/2021Computer Organization and Assembly Language

11



Procedures

 To solve a problem, it is decompose into 
subproblems that are easier to solve than the 
original problem.

Procedures are used to solve these subproblems.

One of the procedures is the main procedure, 
which is entry point to the program.

 The main procedure can call other procedures. 

 The procedures can also call each other, or call 
itself (recursion).

9/15/2021Computer Organization and Assembly Language

12



Procedures

When one procedure calls another, control 

transfers to the called procedure and its 

instructions are executed; 

The called procedure returns control to the 

caller at the next instruction after the call 

statement.

9/15/2021Computer Organization and Assembly Language

13



Procedure Syntax

The syntax of procedure declaration is:

name PROC type

;body of the procedure

RET

name ENDP

9/15/2021Computer Organization and Assembly Language

14



Procedure Syntax

Name is the user-defined name of the procedure. 

 The optional type is NEAR or FAR (if omitted, NEAR is 
assumed). 

NEAR means that the statement that calls the 

procedure is in the same segment as the procedure 

itself.

FAR means that the calling statement is in a 

different segment.

9/15/2021Computer Organization and Assembly Language

15



Procedure Call

The operating system also uses the stack.

9/15/2021Computer Organization and Assembly Language

16



RET Statement

The RET (return) instruction causes control to 

transfer back to the calling procedure. 

Every procedure (except the main procedure) 

should have a RET, usually in the end.

9/15/2021Computer Organization and Assembly Language

17



Passing Data Between Procedures

A procedure must have a way to receive values

from the procedure that calls it, and a way to

return results.

Unlike high-level language procedures,

assembly language procedures do not have

parameter lists, so Registers and the Stack can

be used for parameters and return values.

9/15/2021Computer Organization and Assembly Language

18



CALL and RET

 To invoke a procedure, CALL instruction is used. 

 There are two kinds of procedure calls, direct and indirect. 

 The syntax of a direct procedure call is

CALL name

 where name is the name of a procedure. 

 The syntax of an indirect call is 

CALL address_expression

 where address_expression specifics a register or memory 
location containing address of a procedure.

9/15/2021Computer Organization and Assembly Language

19



Executing a CALL instruction

 The return address to the calling program Is saved 
on the stack.

 This is the offset of the next instruction after the CALL 
statement. 

 The segment:offset of this instruction is in CS:IP at the 
time the call is executed.

 IP register gets the offset address of the first 
instruction of the procedure.

This transfers control to the procedure.

9/15/2021Computer Organization and Assembly Language

20



Procedure Call and the Stack

 IP Register and the Stack before procedure call.

9/15/2021Computer Organization and Assembly Language

21



Procedure Call and the Stack

 IP Register and the Stack after procedure call.

9/15/2021Computer Organization and Assembly Language

22



Procedure Call and the Stack

 IP Register and the Stack before RET statement.

9/15/2021Computer Organization and Assembly Language

23



Procedure Call and the Stack

 IP Register and the Stack after RET statement.

9/15/2021Computer Organization and Assembly Language

24


