
Android Fragments

In this Lecture, you will learn:

➢ Fragments
➢ Creating Fragments
➢ Adding Fragment to Activity
➢ Communicating with the Activity

Mobile Application Development

Fragment

A Fragment is a modular section of an activity with its own user interface.
It has its own lifecycle, receives its own events, and it can be added or
removed while the activity is running. You can combine multiple
fragments in a single activity to build a multi-pane UI and reuse a fragment
in multiple activities.

A fragment is hosted in an activity. Fragment's lifecycle depends on host
activity's lifecycle. For example, when the activity is paused, so are all
fragments in it, and when the activity is destroyed, so are all fragments.
However, while an activity is in the resumed state, you can manipulate
fragments, such as add or remove them. With such a fragment operation,
you can add it to a back stack managed by the activity. Each back stack
entry is a record of the fragment transaction. The back stack allows the
user to reverse a fragment transaction (navigate backwards), by pressing
the Back button.

When you add a fragment as a part of activity layout, it lives in a
ViewGroup inside the activity's view hierarchy. The fragment defines its
own view layout. You can insert a fragment into your activity layout by
declaring the fragment in the activity's layout file, as a <fragment>
element, or from your application code by adding it to an existing
ViewGroup.

Design:
There is more psace on large screens (eg, tablet screen) to combine and
interchange UI components. Fragments allow such designs without need to
manage complex changes to the view hierarchy. By dividing the layout of
an activity into fragments, you can modify the activity's appearance at
runtime and preserve those changes in a back stack.

For example, a news application can use one fragment to show a list of
articles on the left and another fragment to display an article on the right.

Mobile Application Development

Both fragments appear in one activity, side by side, and each fragment has
its own set of lifecycle callback methods and handle their own user input
events. Thus, instead of using one activity to select an article and another
activity to read it, just select an article and read it in the same activity.

Figure 1: Fragments on Tablet and Phone screen
Design each fragment as a modular and reusable component. You can
include one fragment in multiple activities, so design for reuse and avoid
directly manipulating one fragment from another fragment. When
supporting both tablets and handsets, you can reuse your fragments in
different layout configurations to optimize the user experience based on
the available screen space. For example, on a handset, it might be
necessary to separate fragments to provide a single-pane UI when more
than one cannot fit within the same activity.

The news articles application can embed in two fragments in Activity A,
when running on a tablet-sized device. But on a handset screen, Activity A
includes only the fragment for the list of articles, and when user selects an
article, it starts Activity B, which includes the second fragment to read the
article. Thus, the application reuses fragments in different combinations.

Figure 2: (a) Phone screen (b)Tablet screen

Mobile Application Development

For a list-detail application to display the list and detail together.

You would compose the activity’s view from a list fragment and a detail
fragment.

The detail view would show the details of the selected list item.

Selecting another item should display a new detail view. The activity will
replace the detail fragment with another detail fragment. No activities need
to die for this major view change to happen.

Figure 3: One activity hosting two fragments

Mobile Application Development

Creating a Fragment

To create a fragment, create a subclass of Fragment. The Fragment class
has callback methods similar to an activity. To convert an existing
application to use fragments, you might simply move code from your
activity's callback methods into respective callback methods of fragment.

Figure 4: Fragment lifecycle events
Figure 4 shows all the lifecycle events of a fragment. Not all the events
need to be overridden to implement a fragment. Below are some of the
most important events:

Important lifecycle methods:
onCreate()
Called when creating the fragment. Here initialize essential components of
the fragment that you want to retain when the fragment is paused or
stopped, then resumed.

Mobile Application Development

onCreateView()
Called when the fragment draws its user interface for the first time. Return
a View from this method that is the root of your fragment's layout. Return
null if the fragment does not provide a UI.

onPause()
Called when user is leaving the fragment. Commit any changes that should
be persisted beyond the current user session.

Fragment Subclasses:
Some subclasses you can extend, instead of the base Fragment class:

DialogFragment
Displays a floating dialog. Using this class to create a dialog is a good
alternative to using the dialog helper methods in the Activity class, because
you can incorporate a fragment dialog into the back stack of fragments
managed by the activity, allowing user to return to a dismissed fragment.

ListFragment
Displays a list of items that are managed by an adapter (such as a
SimpleCursorAdapter), similar to ListActivity. It provides several methods
for managing a list view, such as the onListItemClick() callback to handle
click events. (Preferred method for displaying a list is to use RecyclerView
instead of ListView. In this case you would need to create a fragment that
includes a RecyclerView in its layout.)

PreferenceFragmentCompat
Displays a hierarchy of Preference objects as a list. This is used to create a
settings screen for your application.

Adding user interface:
To provide a layout for fragment, implement onCreateView() callback
method. Return a View that is the root of your fragment's layout, using
inflate from an XML layout resource. Example:

Mobile Application Development

public class FragmentA extends Fragment {

 @Override
 public View onCreateView(LayoutInflater inflater, @Nullable
ViewGroup container, @Nullable Bundle savedInstanceState) {
 return inflater.inflate(R.layout.fragment_a, container, false);
 }
}

The container parameter passed to onCreateView() is the parent
ViewGroup (from the activity's layout) where fragment layout is inserted.
The savedInstanceState is a Bundle that provides data about the previous
instance of the fragment, if the fragment is being resumed.

The inflate() method takes three arguments:
1. Resource ID: of the layout to inflate.
2. ViewGroup: the parent of the inflated layout.
3. A boolean: indicating whether the inflated layout should be attached to
the ViewGroup during inflation. (Here this is false because the system is
already inserting the inflated layout into the container—passing true would
create a redundant view group in the final layout.)

Mobile Application Development

Adding fragment to an activity

There are two ways to add a fragment to activity layout:

1. Declare fragment in the activity's layout:
Here is the layout file example for an activity with two fragments:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context=".MainActivity">
 <fragment
 android:id="@+id/fragmentA"
 android:name="com.example.shan.fragdemo.FragmentA"
 android:layout_width="0dp"
 android:layout_weight="1"
 android:layout_height="match_parent"/>
 <fragment
 android:id="@+id/fragmentB"
 android:name="com.example.shan.fragdemo.FragmentB"
 android:layout_width="0dp"
 android:layout_weight="1"
 android:layout_height="match_parent" />
</LinearLayout>

The android:name attribute in the <fragment> specifies the Fragment class
to instantiate in the layout. When the system creates this activity layout, it
instantiates each fragment specified in the layout and calls the
onCreateView() method for each one. The system inserts the View
returned by the fragment in place of the <fragment> element.

You will also need corresponding Fragment classes and their layouts.
FragmentA class:
public class FragmentA extends Fragment {
 @Override
 public void onCreate(@Nullable Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 }

Mobile Application Development

 @Override
 public View onCreateView(@NonNull LayoutInflater inflater,
@Nullable ViewGroup container, @Nullable Bundle savedInstanceState) {
 return inflater.inflate(R.layout.fragment_a, container, false);
 }
}

FragmentB class:
public class FragmentB extends Fragment {
 @Override
 public void onCreate(@Nullable Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 }
 @Nullable
 @Override
 public View onCreateView(@NonNull LayoutInflater inflater,
@Nullable ViewGroup container, @Nullable Bundle savedInstanceState) {
 return inflater.inflate(R.layout.fragment_b, container, false);
 }
}

FragmentA layout fragment_a.xml:
<?xml version="1.0" encoding="utf-8"?>
<FrameLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:background="#FF0022">
 <TextView
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:text="Fragment List"/>
</FrameLayout>

FragmentB layout fragment_b.xml”
<?xml version="1.0" encoding="utf-8"?>
<FrameLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:background="#00AA22">
 <TextView
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:text="Fragment Detail"/>
</FrameLayout>

Mobile Application Development

2. Programmatically adding fragment:
At runtime, specify a ViewGroup in which the fragment is to be placed. To
make fragment transactions in your activity (such as add, remove, or
replace), use FragmentTransaction. Get an instance of
FragmentTransaction from your FragmentActivity as:

FragmentManager fragmentManager = getSupportFragmentManager();
FragmentTransaction fragmentTransaction =
fragmentManager.beginTransaction();

Add a fragment using add() method, specifying the fragment to add and
the view in which to insert it. For example:

ExampleFragment fragment = new ExampleFragment();
fragmentTransaction.add(R.id.fragment_container, fragment);
fragmentTransaction.commit();

The first argument passed to add() is the ViewGroup in which the fragment
should be placed, specified by resource ID, and the second parameter is the
fragment to add. Call commit() for the changes to take effect.

Managing Fragments:
To manage the fragments in your activity, use FragmentManager. To get it,
call getSupportFragmentManager() from your activity. Some functions of
FragmentManager include:
→ Get fragments in the activity, with findFragmentById() (for fragments
with a UI) or findFragmentByTag().
→ Pop fragments off the back stack, with popBackStack()
→ Register a listener for changes to the back stack, with
addOnBackStackChangedListener().

Performing Fragment Transactions
You can add, remove, replace, and perform other actions in response to
user interaction. Each set of changes is called a transaction. You can also
save each transaction to a back stack managed by the activity, allowing

Mobile Application Development

user to navigate backward through the fragment changes. Acquire an
instance of FragmentTransaction.
The transactions can be performed using methods such as add(), remove(),
and replace(). Apply the transaction to the activity, with commit() method.

Before calling commit(), you can call addToBackStack() to add the
transaction to a back stack of fragment transactions. This back stack is
managed by the activity allowing to return to the previous fragment state,
by pressing the Back button. For example, replacing one fragment with
another, and preserve the previous state in the back stack:

Fragment newFragment = new ExampleFragment();
FragmentTransaction transaction =
getSupportFragmentManager().beginTransaction();
transaction.replace(R.id.fragment_container, newFragment);
transaction.addToBackStack(null);
transaction.commit();

The newFragment replaces fragment currently in the layout container
identified by the R.id.fragment_container ID. By calling
addToBackStack(), the replace transaction is saved to the back stack so the
user can reverse the transaction and bring back the previous fragment.
FragmentActivity retrieve fragments from back stack via onBackPressed().

When multiple changes are added to the transaction before calling
commit(), the changes are added to the back stack as a single transaction
and the Back button reverses them all together. The order of adding
changes to FragmentTransaction doesn't matter, but call commit() last.

Calling commit() doesn't perform the transaction immediately. Rather, it
schedules it to run on the activity's UI thread (the "main" thread). If
necessary, however, you may call executePendingTransactions() from your
UI thread to immediately execute transactions submitted by commit().
Doing so is usually not necessary unless the transaction is a dependency
for jobs in other threads.

Mobile Application Development

Note: You can commit a transaction using commit() only prior to the
activity saving its state (when the user leaves the activity). If you attempt
to commit later, an exception is thrown. This is because the state after the
commit can be lost if the activity needs to be restored. For situations in
which it's okay that you lose the commit, use commitAllowingStateLoss().

Communicating with the Activity

Although a fragment is independent unit, but an instance of a fragment is
directly tied to the activity that hosts it. Thus, fragment can access the
FragmentActivity instance with getActivity() and perform tasks such as
find a view in the activity layout:
View listView = getActivity().findViewById(R.id.list);

An activity can also call methods in the fragment by acquiring a reference
to the Fragment from FragmentManager, using findFragmentById() or
findFragmentByTag(). Example:
ExampleFragment fragment = (ExampleFragment)
getSupportFragmentManager().findFragmentById(R.id.my_fragment);

Creating event callbacks to the activity:
A fragment may need to share events or data with the activity or other
fragments hosted by the activity. To share data, create a shared
ViewModel. To propagate events that cannot be handled with a
ViewModel, define a callback interface inside the fragment which the host
activity can implement. When the activity receives a callback through the
interface, it can share the data with other fragments in the layout.

For a news application with two fragments—one for list of articles
(fragment A) and another to display an article (fragment B)—then
fragment A must tell the activity when a list item is selected so that it can
tell fragment B to display the article. So OnArticleSelectedListener
interface is declared in fragment A:

public static class FragmentA extends ListFragment {
 ...

Mobile Application Development

 // Container Activity must implement this interface
 public interface OnArticleSelectedListener {
 public void onArticleSelected(Uri articleUri);
 }
 ...
}
The activity implements the OnArticleSelectedListener interface and
overrides onArticleSelected() to notify fragment B of the event from
fragment A. To ensure that the host activity implements this interface,
fragment A's onAttach() callback method (called when adding the
fragment to activity) instantiates an instance of OnArticleSelectedListener
by casting the Activity that is passed into onAttach():

public static class FragmentA extends ListFragment {
 OnArticleSelectedListener mListener;
 ...
 @Override
 public void onAttach(Context context) {
 super.onAttach(context);
 try {
 mListener = (OnArticleSelectedListener) context;
 } catch (ClassCastException e) {
 throw new ClassCastException(context.toString() + " must
implement OnArticleSelectedListener");
 }
 }
 ...
}

If the activity hasn't implemented the interface, then the fragment throws a
ClassCastException. On success, the mListener member holds a reference
to activity's implementation of OnArticleSelectedListener, so that fragment
A can share events with the activity by calling methods defined by the
OnArticleSelectedListener interface. For example, if fragment A is an
extension of ListFragment, each time user clicks a list item, the system

Mobile Application Development

calls onListItemClick() in the fragment, which then calls
onArticleSelected() to share the event with the activity:

public static class FragmentA extends ListFragment {
 OnArticleSelectedListener mListener;
 ...
 @Override
 public void onListItemClick(ListView l, View v, int position, long id) {
 // Append the clicked item's row ID with the content provider Uri
 Uri noteUri =
ContentUris.withAppendedId(ArticleColumns.CONTENT_URI, id);
 // Send the event and Uri to the host activity
 listener.onArticleSelected(noteUri);
 }
 ...
}

The id parameter passed to onListItemClick() is the row ID of the clicked
item, which the activity (or other fragment) uses to fetch the article from
the application's ContentProvider.

Mobile Application Development

Adding items to the App Bar
Fragments can contribute menu items to the activity's Options Menu (and
app bar) by implementing onCreateOptionsMenu(). In order for this
method to receive calls, call setHasOptionsMenu() during onCreate(), to
indicate that the fragment would like to add items to the Options Menu.
Otherwise, the fragment doesn't receive a call to onCreateOptionsMenu().

Any items added to the Options Menu from the fragment are appended to
the existing menu items. The fragment also receives callbacks to
onOptionsItemSelected() when a menu item is selected.

You can also register a view in your fragment layout to provide a context
menu by calling registerForContextMenu(). When the user opens the
context menu, the fragment receives a call to onCreateContextMenu().
When user selects an item, the fragment receives a call to
onContextItemSelected().

Note: Although your fragment receives an on-item-selected callback for
each menu item it adds, the activity is first to receive the respective
callback when the user selects a menu item. If the activity's
implementation of the on-item-selected callback does not handle the
selected item, then the event is passed to the fragment's callback. This is
true for the Options Menu and context menus.

Handling the Fragment Lifecycle:
Managing the lifecycle of a fragment is similar to the lifecycle of an
activity. Like an activity, a fragment can exist in three states:

Resumed
 The fragment is visible in the running activity.
Paused
 Another activity is in the foreground and has focus, but the activity in
which this fragment lives is still visible (the foreground activity is partially
transparent or doesn't cover the entire screen).
Stopped

Mobile Application Development

 The fragment isn't visible. Either the host activity has been stopped or
the fragment has been removed from the activity but added to the back
stack. A stopped fragment is still alive but not visible to the user and is
killed if the activity is killed.

Preserve the UI state of a fragment across configuration changes using a
combination of onSaveInstanceState(Bundle), ViewModel, and persistent
local storage.

An activity is placed into a back stack of activities managed by the system
when it's stopped. However, a fragment is placed into a back stack
managed by the host activity only when you explicitly request that the
instance be saved by calling addToBackStack() during a transaction that
removes the fragment. Otherwise, managing the fragment lifecycle is
similar to managing the activity lifecycle; the same practices apply.

If you need a Context object within your Fragment, call getContext().
However, when the fragment isn't attached to activity yet, or was detached
during the end of its lifecycle, getContext() returns null.

Coordinating with the activity lifecycle:
The lifecycle of the activity in which the fragment lives directly affects the
lifecycle of the fragment, such that each lifecycle callback for the activity
results in a similar callback for each fragment. For example, when the
activity receives onPause(), each fragment in the activity receives
onPause().

Fragments have a few extra lifecycle callbacks, however, that handle
unique interaction with the activity in order to perform actions such as
build and destroy the fragment's UI. Thy are:

onAttach(): Called when the fragment has been associated with the activity
(the Activity is passed in here).
OnCreateView(): Called to create the view hierarchy associated with the
fragment.

Mobile Application Development

OnActivityCreated(): Called when the activity's onCreate() method has
returned.
OnDestroyView(): Called when the view hierarchy associated with the
fragment is being removed.
OnDetach(): Called when the fragment is being disassociated from the
activity.

Each successive state of the activity determines which callback methods a
fragment may receive. When activity receives onCreate() callback, a
fragment in the activity receives no more than the onActivityCreated()
callback.

Once the activity reaches resumed state, freely add and remove fragments
to the activity. Thus, only while the activity is in the resumed state can the
lifecycle of a fragment change independently. However, when the activity
leaves the resumed state, the fragment is pushed through its lifecycle.

Example:
To bring everything together, here's an example of an activity using two
fragments to create a two-pane layout. The activity below includes one
fragment to show a list of play titles and another to show a summary of the
play when selected from the list. It also demonstrates different
configurations of the fragments, based on the screen configuration.

The main activity applies a layout in the usual way, during onCreate():

@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 setContentView(R.layout.fragment_layout);
}

The layout applied is fragment_layout.xml:

Mobile Application Development

<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="horizontal"
 android:layout_width="match_parent"
android:layout_height="match_parent">
 <fragment
class="com.example.android.apis.app.FragmentLayout$TitlesFragment"
 android:id="@+id/titles" android:layout_weight="1"
 android:layout_width="0px"
android:layout_height="match_parent" />

 <FrameLayout android:id="@+id/details" android:layout_weight="1"
 android:layout_width="0px"
android:layout_height="match_parent"
 android:background="?android:attr/detailsElementBackground" /
>

</LinearLayout>

Using this layout, the system instantiates the TitlesFragment (listing play
titles) when activity loads the layout, while the FrameLayout (for play
summary) consumes space on the right side of the screen, but remains
empty at first. It's not until the user selects an item from the list that a
fragment is placed into the FrameLayout.

Not all screen configurations are wide enough to show both the list of
plays and the summary, side by side. So, the layout above is used only for
the landscape screen configuration, by saving it at
res/layout-land/fragment_layout.xml.

Thus, when the screen is in portrait orientation, the system applies the
following layout, which is saved at res/layout/fragment_layout.xml:

<FrameLayout
xmlns:android="http://schemas.android.com/apk/res/android"

Mobile Application Development

 android:layout_width="match_parent"
android:layout_height="match_parent">
 <fragment
class="com.example.android.apis.app.FragmentLayout$TitlesFragment"
 android:id="@+id/titles"
 android:layout_width="match_parent"
android:layout_height="match_parent" />
</FrameLayout>

This layout includes only TitlesFragment. When the device is in portrait
orientation, only the list of play titles is visible. When the user clicks a list
item, the application starts a new activity to show the summary, instead of
loading a second fragment.

How this is accomplished in the fragment classes. First is TitlesFragment,
which shows the list of play titles. This fragment extends ListFragment
and relies on it to handle most of the list view work.

There are two possible behaviors when the user clicks a list item:
depending on which of the two layouts is active, it can either create and
display a new fragment to show the details in the same activity (adding the
fragment to the FrameLayout), or start a new activity (where the fragment
can be shown).

public static class TitlesFragment extends ListFragment {
 boolean dualPane;
 int curCheckPosition = 0;

 @Override
 public void onActivityCreated(Bundle savedInstanceState) {
 super.onActivityCreated(savedInstanceState);

 // Populate list with our static array of titles.
 setListAdapter(new ArrayAdapter<String>(getActivity(),
 android.R.layout.simple_list_item_activated_1,
Shakespeare.TITLES));

Mobile Application Development

 // Check to see if we have a frame in which to embed the details
 // fragment directly in the containing UI.
 View detailsFrame = getActivity().findViewById(R.id.details);
 dualPane = detailsFrame != null && detailsFrame.getVisibility()
== View.VISIBLE;

 if (savedInstanceState != null) {
 // Restore last state for checked position.
 curCheckPosition = savedInstanceState.getInt("curChoice", 0);
 }

 if (dualPane) {
 // In dual-pane mode, the list view highlights the selected item.

getListView().setChoiceMode(ListView.CHOICE_MODE_SINGLE);
 // Make sure our UI is in the correct state.
 showDetails(curCheckPosition);
 }
 }

 @Override
 public void onSaveInstanceState(Bundle outState) {
 super.onSaveInstanceState(outState);
 outState.putInt("curChoice", curCheckPosition);
 }

 @Override
 public void onListItemClick(ListView l, View v, int position, long id) {
 showDetails(position);
 }

 /**
 * Helper function to show the details of a selected item, either by
 * displaying a fragment in-place in the current UI, or starting a
 * whole new activity in which it is displayed.

Mobile Application Development

 */
 void showDetails(int index) {
 curCheckPosition = index;

 if (dualPane) {
 // We can display everything in-place with fragments, so update
 // the list to highlight the selected item and show the data.
 getListView().setItemChecked(index, true);

 // Check what fragment is currently shown, replace if needed.
 DetailsFragment details = (DetailsFragment)

getSupportFragmentManager().findFragmentById(R.id.details);
 if (details == null || details.getShownIndex() != index) {
 // Make new fragment to show this selection.
 details = DetailsFragment.newInstance(index);

 // Execute a transaction, replacing any existing fragment
 // with this one inside the frame.
 FragmentTransaction ft =
getSupportFragmentManager().beginTransaction();
 if (index == 0) {
 ft.replace(R.id.details, details);
 } else {
 ft.replace(R.id.a_item, details);
 }

ft.setTransition(FragmentTransaction.TRANSIT_FRAGMENT_FADE);
 ft.commit();
 }

 } else {
 // Otherwise we need to launch a new activity to display
 // the dialog fragment with selected text.
 Intent intent = new Intent();
 intent.setClass(getActivity(), DetailsActivity.class);

Mobile Application Development

 intent.putExtra("index", index);
 startActivity(intent);
 }
 }
}

The second fragment, DetailsFragment shows the play summary for the
item selected from the list from TitlesFragment:

public static class DetailsFragment extends Fragment {
 /**
 * Create a new instance of DetailsFragment, initialized to
 * show the text at 'index'.
 */
 public static DetailsFragment newInstance(int index) {
 DetailsFragment f = new DetailsFragment();

 // Supply index input as an argument.
 Bundle args = new Bundle();
 args.putInt("index", index);
 f.setArguments(args);

 return f;
 }

 public int getShownIndex() {
 return getArguments().getInt("index", 0);
 }

 @Override
 public View onCreateView(LayoutInflater inflater, ViewGroup container,
 Bundle savedInstanceState) {
 if (container == null) {
 // We have different layouts, and in one of them this
 // fragment's containing frame doesn't exist. The fragment
 // may still be created from its saved state, but there is

Mobile Application Development

 // no reason to try to create its view hierarchy because it
 // isn't displayed. Note this isn't needed -- we could just
 // run the code below, where we would create and return the
 // view hierarchy; it would just never be used.
 return null;
 }

 ScrollView scroller = new ScrollView(getActivity());
 TextView text = new TextView(getActivity());
 int padding =
(int)TypedValue.applyDimension(TypedValue.COMPLEX_UNIT_DIP,
 4, getActivity().getResources().getDisplayMetrics());
 text.setPadding(padding, padding, padding, padding);
 scroller.addView(text);
 text.setText(Shakespeare.DIALOGUE[getShownIndex()]);
 return scroller;
 }
}

Recall from the TitlesFragment class, that, if the user clicks a list item and
the current layout does not include the R.id.details view (which is where
the DetailsFragment belongs), then the application starts the
DetailsActivity activity to display the content of the item.

Here is the DetailsActivity, which simply embeds the DetailsFragment to
display the selected play summary when the screen is in portrait
orientation:

public static class DetailsActivity extends FragmentActivity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 if (getResources().getConfiguration().orientation
 == Configuration.ORIENTATION_LANDSCAPE) {

Mobile Application Development

 // If the screen is now in landscape mode, we can show the
 // dialog in-line with the list so we don't need this activity.
 finish();
 return;
 }

 if (savedInstanceState == null) {
 // During initial setup, plug in the details fragment.
 DetailsFragment details = new DetailsFragment();
 details.setArguments(getIntent().getExtras());
 getSupportFragmentManager().beginTransaction().add(android.R.
id.content, details).commit();
 }
 }
}

Mobile Application Development

