

Mobile Application Development

Model-View-Controller in Android

Model View Controller and Android

2

In this Lecture, you will learn:

➢ Creating new classes

➢ MVC Architecture in Android

➢ Updating Layers of MVC

➢ Adding Icon

Model View Controller and Android

3

In this lecture, we will update the application to add more questions and

new buttons to view previous and next questions. Model View Controller

Architecture will be introduced. Figure 1 shows next button added to

application. Adding image and icon resources will also be discussed.

Figure 1: Adding a new button for next quiz

Model View Controller and Android

4

Adding new classes:
In MVC architecture, Model refers to the data. For the GeoQuiz app, the

main data is the quiz and its correct answer. For this we need to define its

Model. This data can be modeled as a class.

We are going to add a class named Question to the project. An instance of

this class will encapsulate a single true-false question.

We will create an array of Question objects to accommodate more

questions.

In the project tool window, right-click the application package and select

New → Java Class. Name the class Question and click OK to create the

new class. Since this class will hold question and correct answer, so this

class serves as the model.

In Question.java, add two member variables and a constructor.

class (Question.java)

public class Question {

private int mTextResId;

private boolean mAnswerTrue;

public Question(int textResId, Boolean answerTrue) {

mTextResId = textResId;

mAnswerTrue = answerTrue;

}

}

Listing 1: Creating new question class

Question class holds the question text and the question answer (true or

false). The mTextResId variable is int and not String because it will hold

the resource ID (always an int) of a string resource for the question.

These variables need getter and setter methods which can be auto

generated by Android Studio.

Model View Controller and Android

5

Generating getters and setters

Configure Android Studio to recognize the m prefix for member variables.

Open Android Studio’s preferences (File → Settings on Windows).

Expand Editor and then expand Code Style. Select Java, then choose the

Code Generation tab.

In the Naming table, select the Field row and add m as the name prefix for

fields (Figure 2). Add s as the name prefix for static fields.

Figure 2: Setting Java code style preferences

Now generating a getter for mTextResId will create getTextResId() rather

than getMTextResId() and isAnswerTrue() rather than isMAnswerTrue().

In Question.java, right-click after the constructor and select Generate... and

then Getter and Setter. Select mTextResId and mAnswerTrue and click

OK to create a getter and setter for each variable. This will generate the

code as shown in listing 2.

Model View Controller and Android

6

public class Question {

private int mTextResId;

private boolean mAnswerTrue;

...

public int getTextResId() {

return mTextResId;

}

public void setTextResId(int textResId) {

mTextResId = textResId;

}

public boolean isAnswerTrue() {

return mAnswerTrue;

}

public void setAnswerTrue(boolean answerTrue) {

mAnswerTrue = answerTrue;

}

}

Listing 2: Auto generated getters and setters

The Question class is now complete. Now modify QuizActivity to work

with Question. In QuizActivity create an array of Question objects. It will

then interact with the TextView and the three Buttons to display questions

and provide feedback. Figure 3 shows these relationships.

Figure 3: Object diagram showing MVC architecture of the app

Model View Controller and Android

7

Model-View-Controller and Android
In Figure 3 objects are separated as Model, Controller, and View. Android

applications are designed around an architecture called Model-View-

Controller, or MVC. In MVC, all objects in your application must be a

model object, a view object, or a controller object.

A model object holds the application’s data and “business logic.” It models

the things your app is concerned with, such as a user, a product, a photo on a

server, or a true-false question. Model objects have no knowledge of the UI;

their sole purpose is holding and managing data. GeoQuiz’s model layer

consists of the Question class.

View objects draw themselves on the screen and respond to user input, like

touches. You can also create custom view classes. An application’s view

objects make up its view layer. GeoQuiz’s view layer consists of the

widgets that are inflated from activity_main.xml.

Controller objects bind the view and model objects. They contain

“application logic.” Controllers are designed to respond to events triggered

by view objects and to manage the flow of data to and from model objects

and the view layer. Controller in Android is typically a subclass of Activity,

Fragment, or Service. GeoQuiz’s controller layer, is the MainActivity at this

point.

Model View Controller and Android

8

MVC Architecture Benefits
Separating classes into model, view, and controller layers helps you design

and understand an application; you can think in terms of layers instead of

individual classes.

You can see the benefits of keeping layers separate in a simple app like

GeoQuiz. To update GeoQuiz’s view layer to include a NEXT button, you

do not need to remember a anything about the Question class.

MVC also makes classes easier to reuse. A class with restricted

responsibilities is more. For instance, the Question model class, knows

nothing about the widgets used to display a true-false question. This makes

it easy to use Question throughout your app for different purposes. For

example, if you wanted to display a list of all the questions at once, you

could use the same object that you use here to display just one question at a

time.

Model View Controller and Android

9

Updating the View Layer

Objects in the view layer are inflated from XML layout file. The

activity_main.xml layout needs to be updated to add Next Button.

The changes you need to make to the view layer are:

Remove the android:text attribute from the TextView. You no longer want

a hardcoded question. Give the TextView an android:id attribute to give it a

resource ID so that you can set its text in the Activity’s code. Add the new

Button widget as a child of the root Layout.

…

<string name="question_australia">Canberra is the capital of Australia.

</string>

<string name="question_oceans">The Pacific Ocean is larger than

the Atlantic Ocean.</string>

<string name="question_mideast">The Suez Canal connects the Red Sea

and the Indian Ocean.</string>

<string name="question_africa">The source of the Nile River is in

Egypt.</string>

<string name="question_americas">The Amazon River is the longest river

in the Americas.</string>

<string name="question_asia">Lake Baikal is the world\'s oldest and

deepest freshwater lake.</string>

<string name="true_button">True</string>

<string name="false_button">False</string>

<string name="next_button">Next</string>

<string name="correct_toast">Correct!</string>

Listing 3 Updating strings (strings.xml)

Update the strings.xml file to add questions text as shown in listing 3.

Model View Controller and Android

10

Updating the Controller Layer

Open QuizActivity.java. Add variables for the TextView and the new

Button. Also, create an array of Question objects and an index for the array.

public class QuizActivity extends AppCompatActivity {

private Button mTrueButton;

private Button mFalseButton;

private Button mNextButton;

private TextView mQuestionTextView;

private Question[] mQuestionBank = new Question[]

{

new Question(R.string.question_australia, true),

new Question(R.string.question_oceans, true),

new Question(R.string.question_mideast, false),

new Question(R.string.question_africa, false),

new Question(R.string.question_americas, true),

new Question(R.string.question_asia, true),

};

private int mCurrentIndex = 0;

...

Listing 4: Adding variables and Question array to controller

Here Question constructor is invoked several times to create an

array of Question objects.

Use mQuestionBank, mCurrentIndex, and the accessor methods in

Question to show questions on screen. First, get a reference for the

TextView and set its text to the question at the current index.

public class QuizActivity extends AppCompatActivity {

...

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_main);

mQuestionTextView = (TextView)

findViewById(R.id.question_text_view);

Model View Controller and Android

11

int question =

mQuestionBank[mCurrentIndex].getTextResId();

mQuestionTextView.setText(question);

mTrueButton = (Button)

findViewById(R.id.true_button);

...

}

}

Listing 5: Wiring up the TextView in controller

Now wire up NEXT button to increment the index and update the

TextView’s text to show next question.

public class QuizActivity extends AppCompatActivity {

...

@Override

protected void onCreate(Bundle savedInstanceState) {

...

mFalseButton.setOnClickListener(new View.OnClickListener() {

...

}

});

mNextButton = (Button) findViewById(R.id.next_button);

mNextButton.setOnClickListener(new View.OnClickListener() {

@Override

public void onClick(View v) {

mCurrentIndex = (mCurrentIndex + 1) %

mQuestionBank.length;

int question =

mQuestionBank[mCurrentIndex].getTextResId();

mQuestionTextView.setText(question);

}

});

}

}

Listing 6: Wiring up the new button (MainActivity.java)

Model View Controller and Android

12

Put this code into a private method as shown in Listing 7 and call that

method in the mNextButton’s listener and at the end of onCreate(Bundle)

to initially set the text in the activity’s view.

public class QuizActivity extends AppCompatActivity {

...

@Override

protected void onCreate(Bundle savedInstanceState) {

...

mQuestionTextView = (TextView)

findViewById(R.id.question_text_view);

int question =

mQuestionBank[mCurrentIndex].getTextResId();

mQuestionTextView.setText(question);

...

mNextButton.setOnClickListener(new View.OnClickListener() {

@Override

public void onClick(View v) {

mCurrentIndex = (mCurrentIndex + 1) %

mQuestionBank.length;

int question =

mQuestionBank[mCurrentIndex].getTextResId();

mQuestionTextView.setText(question);

updateQuestion();

}

});

updateQuestion();

}

private void updateQuestion() {

int question =

mQuestionBank[mCurrentIndex].getTextResId();

mQuestionTextView.setText(question);

}

}

Listing 7 Encapsulating with updateQuestion()

Model View Controller and Android

13

Now it is time to turn to the answers. Create a new method that will accept

a Boolean variable that identifies whether the user pressed TRUE or

FALSE. It will check the user’s answer against the answer in the current

Question object and will make a Toast.

In MainActivity.java, add checkAnswer(boolean) shown in Listing 8.

public class QuizActivity extends AppCompatActivity {

...

@Override

protected void onCreate(Bundle savedInstanceState) {

...

}

private void updateQuestion() {

int question = mQuestionBank[mCurrentIndex].getTextResId();

mQuestionTextView.setText(question);

}

private void checkAnswer(boolean userPressedTrue)

{

boolean answerIsTrue =

mQuestionBank[mCurrentIndex].isAnswerTrue();

int messageResId = 0;

if (userPressedTrue == answerIsTrue) {

messageResId = R.string.correct_toast;

} else {

messageResId = R.string.incorrect_toast;

}

Toast.makeText(this, messageResId, Toast.LENGTH_SHORT)

.show();

}

}

Listing 8 Adding checkAnswer method

Now call this method from each of the buttons True and False to check the

answer is shown in listing 9.

Model View Controller and Android

14

public class QuizActivity extends AppCompatActivity {

...

@Override

protected void onCreate(Bundle savedInstanceState) {

...

mTrueButton = (Button) findViewById(R.id.true_button);

mTrueButton.setOnClickListener(new View.OnClickListener() {

@Override

public void onClick(View v) {

Toast.makeText(QuizActivity.this, R.string.correct_toast,

Toast.LENGTH_SHORT).show();

checkAnswer(true);

}

});

mFalseButton = (Button) findViewById(R.id.false_button);

mFalseButton.setOnClickListener(new View.OnClickListener() {

@Override

public void onClick(View v) {

Toast.makeText(QuizActivity.this, R.string.incorrect_toast,

Toast.LENGTH_SHORT).show();

checkAnswer(false);

}

});

...

}

...

}

Listing 9: calling checkAnswer method

Model View Controller and Android

15

Adding an Icon

GeoQuiz is now running, but the UI would be better with NEXT button

having right-pointing arrow icon.

Though the icons are available online, the following github project provides

a number of useful icons.

https://github.com/ksoichiro/Android-ColorfulIcons

In your project, within this directory are the drawable-hdpi, drawablemdpi,

drawable-xhdpi, and drawable-xxhdpi directories.

The suffixes on these directory names refer to the screen pixel density of a

device:

mdpi medium-density screens (~160dpi)

hdpi high-density screens (~240dpi)

xhdpi extra-high-density screens (~320dpi)

xxhdpi extra-extra-high-density screens (~480dpi)

Within each directory, you should have two image files – arrow_right.png

and arrow_left.png, customized for the screen pixel density specified in the

directory’s name. Include all the image files in GeoQuiz.

When the app runs, the OS will choose the best image file for the specific

device running the app.

Note that by duplicating the images increases the app size a bit.

If an app runs on a device that has a screen density not included in any of

the application’s screen density qualifiers, Android will automatically scale

the available image to the appropriate size for the device. Thus it is not

necessary to provide images for all of the pixel density buckets. To reduce

the size of your application, you can only include a few of the higher

resolution buckets and selectively optimize for lower resolutions when

Android’s automatic scaling provides an image with artifacts on those

lower resolution devices.

https://github.com/ksoichiro/Android-ColorfulIcons

Model View Controller and Android

16

Adding resources to a project

The next step is to add the image files to GeoQuiz’s resources.

Open project tool window, displaying the Project view (select Project

from the dropdown at the top of the project tools window). Expand the

GeoQuiz/app/src/main/res.

Copy the png icons and paste them copied the corresponding directories

within app/src/main/res. The filenames must be lowercase and have no

spaces. You should now have four density qualified directories, each with

an arrow_left.png and arrow_right.png file.

Switch back to the Android view, to see the newly added drawable files.

Any .png, .jpg, or .gif file you add to a res/drawable folder will be

automatically assigned a resource ID. When the app runs, the OS will

determine the appropriate image to display on that particular device.

Referencing resources in XML

Open activity_quiz.xml and add two attributes to the Button widget

definition.

…

<Button

android:id="@+id/next_button"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:text="@string/next_button"

android:drawableRight="@drawable/arrow_right"

android:drawablePadding="4dp" />

…

Listing : Adding an icon to the NEXT button (activity_quiz.xml)

In an XML resource, you refer to another resource by its resource type and

name. A reference to a string resource begins with @string/. A reference to

a drawable resource begins with @drawable/.

Model View Controller and Android

17

The ImageButton

Use ImageButtons instead of regular Buttons to show just icons without

text. ImageButton is a widget that inherits from ImageView. Button, on the

other hand, inherits from TextView.

