
Android Sensors

In this Lecture, you will learn:

➢ Sensor Manager
➢ Listing All Sensors
➢ Reading Sensor Data

Mobile Application Development

Android devices have built-in sensors that measure motion, orientation,
and other environmental condition. The android platform supports three
broad categories of sensors:

Motion Sensors
Environmental sensors
Position sensors

Some of the sensors are hardware based and some are software based
sensors. Hardware-based sensors are physical components built into a
handset or tablet device. They derive their data by directly measuring
specific environmental properties, such as acceleration, geomagnetic field
strength, or angular change. Software-based sensors are not physical
components and derive their data from one or more of the hardware-based
sensors. The linear acceleration sensor and the gravity sensor are examples
of software-based sensors.

Sensor events
Monitoring sensor events is how you acquire raw sensor data. A sensor
event occurs every time a sensor detects a change in the parameters it is
measuring. A sensor event provides you with four pieces of information:
the name of the sensor that triggered the event, the timestamp for the
event, the accuracy of the event, and the raw sensor data that triggered the
event.

Mobile Application Development

SensorManager
Android allows to access the data from these sensors and use it in
application. Some of the important classes to manage sensors are
SensorManager and Sensor. To use sensors, instantiate the object of
SensorManager class. It can be achieved as follows.

SensorManager sensorManager =
(SensorManager)this.getSystemService(SENSOR_SERVICE);

Now you can instantiate any sensor by calling getDefaultSensor() method
of the SensorManager class. Before getting data from the sensor, it is better
to check if the required sensor is available on the device.

Sensor sensorGyroscope =
sensorManager.getDefaultSensor(Sensor.TYPE_GYROSCOPE);
if (sensorGyroscope!=null){
 Toast.makeText(this, "sensor gyro init",
 Toast.LENGTH_LONG).show();
}else{
 Toast.makeText(this, "sensor gyro not available",
 Toast.LENGTH_LONG).show();
}

Monitoring Sensor Events
If the sensor is available and the object is initialized, register its listener
and override two methods which are onAccuracyChanged and
onSensorChanged.

sensorManager.registerListener(new SensorEventListener() {
 @Override
 public void
onSensorChanged(SensorEvent event) {
 }
 @Override
 public void onAccuracyChanged(Sensor
sensor, int accuracy) {
 }
 },
 sensorLight,
 SensorManager.SENSOR_DELAY_NORMAL);

Mobile Application Development

Getting list of supported sensors
You can get a list of sensors supported by your device by calling the
getSensorList method, which will return a list of sensors containing their
name and version number and other information.

List<Sensor> availSensor =
sensorManager.getSensorList(Sensor.TYPE_ALL);
String sensorType = "";
for(Sensor sensor: availSensor){
 sensorType+= sensor.getStringType();
}
Toast.makeText(this, sensorType,Toast.LENGTH_LONG).show();

Mobile Application Development

Reading Sensor Data

Different sensors measure their specific kinds of measurements. An
acceleration sensor measures the acceleration applied to the device,
including the force of gravity.

public void initAccelerometer(){
 Sensor sensorAccelerometer =
mSensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER);
 mSensorManager.registerListener(new SensorEventListener() {
 @Override
 public void onSensorChanged(SensorEvent event) {
 mTextViewSensorAccelerometer.setText("x:
"+event.values[0]+"\ny: "+event.values[1]+"\nz:
"+event.values[2]);
 }
 @Override
 public void onAccuracyChanged(Sensor sensor, int accuracy)
{
 }
 }
 ,sensorAccelerometer, SensorManager.SENSOR_DELAY_NORMAL
);
}

Mobile Application Development

Using Google Play filters to target specific sensor configurations
If you are publishing your application on Google Play you can use the
<uses-feature> element in your manifest file to filter your application from
devices that do not have the appropriate sensor configuration for your
application. The following example filters devices that do not have an
accelerometer:

<uses-feature android:name="android.hardware.sensor.accelerometer"
 android:required="true" />

Mobile Application Development

