

Mobile Application Development

Multiple Activities

Multiple Activities

2

In this Lecture, you will learn:

➢ Creating new activity and layout

➢ Start an activity from another activity

➢ Intents

➢ Pass data between activities

➢ Returning result from an activity

Multiple Activities

3

Creating new activities:
Creating a new activity typically involves three files: the Java class file,

the XML layout file, and the application manifest file. Creating new

activity by yourself can cause some errors, so you can use Android

Studio’s New Activity wizard to do this work for you.

To create a new activity, launch the New Activity wizard by right-clicking

on your application package in the project window.

Choose New → Activity → Empty Activity, as shown in Figure 1.

Figure 1: New activity wizard

You should see a dialog like Figure 2. Set Activity Name to AnsActivity.

Default Layout Name will be set to activity_ans.

Multiple Activities

4

Figure 2: New Empty Activity wizard

The default values for the remaining fields are fine, just make sure that the

package name is what you expect. Click the Finish button automatically

create the new files and register the new activity in the

AndroidManifest.xml file.

Now open and update the XML layout file for the new activity. Add a

TextView for the answer and a button to return to previous activity.

Multiple Activities

5

A new activity subclass

Open the AnsActivity.java file to view AnsActivity class. This class

already includes a basic implementation of onCreate(Bundle) that passes

the resource ID of the layout defined in activity_ans.xml to

setContentView(…). The New Activity wizard also declared AnsActivity

in the application’s Manifest file.

Declaring activities in the manifest

The manifest is an XML file containing metadata that describes your

application to the Android OS. The file is named AndroidManifest.xml,

and is located in the app/manifests directory of project.

In the project tool window open AndroidManifest.xml. You can also use

Android Studio’s Quick Open dialog by pressing Ctrl+Shift+N and

starting to type the filename.

Every activity in an application must be declared in the manifest so that the

OS can access it. The entry in the Manifest file should look like below:

<activity android:name=".AnsActivity">

</activity>

The android:name attribute is required. The dot at the start of this

attribute’s value tells the OS that this activity’s class is in the package

specified in the package attribute in the manifest element at top of the file.

Multiple Activities

6

Starting new Activity

public void startActivity(Intent intent)

The startActivity(Intent) is simplest way to start an activity. When an

activity calls startActivity(Intent), it is sent to a part of the OS called the

ActivityManager. The ActivityManager then creates the Activity instance

and calls its onCreate(Bundle) method.

The ActivityManager starts a particular activity which is mentioned in the

Intent parameter.

Multiple Activities

7

Intents

An intent is an object that a component can use to communicate with the

OS. The components apart from activities include services, broadcast

receivers, and content providers.

Intents are multipurpose communication tools. Intent class provides

different constructors depending on what you are using the intent to do.

Here, the intent tells the ActivityManager which activity to start, so you

will use this constructor:

public Intent(Context packageContext, Class<?> cls)

The Class argument specifies the activity class that the ActivityManager

should start. The Context argument tells the ActivityManager which

application package the activity class can be found in.

In mAnsButton’s listener, create an Intent that includes the AnsActivity

class. Pass this intent to startActivity(Intent) (Listing 1).

mAnsButton = (Button)findViewById(R.id.ans_button);

mCheatButton.setOnClickListener(new View.OnClickListener() {

@Override

public void onClick(View v) {

Intent intent = new Intent(MainActivity.this,

AnsActivity.class);

startActivity(intent);

}

});

Listing 1 Starting AnsActivity (MainActivity.java)

ActivityManager checks the package’s manifest for a declaration with the

same name as the specified Class. If it finds a declaration, it starts the

activity. If it does not, you get a ActivityNotFoundException, which will

crash your app.

Run the application and press the button to open new activity.

Multiple Activities

8

Explicit and implicit intents

Creating an Intent with a Context and a Class object, creates an explicit

intent. You use explicit intents to start activities within your application.

When an activity in one application starts an activity in another

application, it is an implicit intent.

Multiple Activities

9

Passing Data Between Activities
The MainActivity will inform the AnsActivity of the answer to the current

question when the AnsActivity is started. When user presses the Back

button to return to the MainActivity, the AnsActivity will be destroyed. It

will send data to the MainActivity about whether the user cheated.

Using intent extras

To inform the MainActivity of the answer to the current question, you will

pass it the value of mQuestionBank[mCurrentIndex].isAnswerTrue()

You will send this value as an extra on the Intent that is passed into

startActivity(Intent). Extras are arbitrary data that the calling activity can

include with an intent. The OS forwards the intent to the recipient activity,

which can then access the extras and retrieve the data

An extra is structured as a key-value pair:

public Intent putExtra(String name, boolean value)

Intent.putExtra(…) has many overloads, but it always has two arguments.

The first argument is always a String key, and the second argument is the

value. It returns the Intent itself, so you can chain multiple if needed.

mAnsButton.setOnClickListener(new View.OnClickListener() {

@Override

public void onClick(View v) {

Intent intent = new Intent(MainActivity.this,

AnsActivity.class);

boolean answerIsTrue =

mQuestionBank[mCurrentIndex].isAnswerTrue();

Intent intent = AnsActivity.newIntent(MainActivity.this,

answerIsTrue);

startActivity(intent);

}

});

Listing 2: Launching AnsActivity with an extra (MainActivity.java)

Multiple Activities

10

To retrieve the value from the extra, use:

public boolean getBooleanExtra(String name, boolean defaultValue)

The first argument is the name of the extra. The second argument of

getBooleanExtra(…) is a default answer if the key is not found.

In AnsActivity, retrieve the value from the extra in onCreate(Bundle) and

store it in a member variable.

public class AnsActivity extends AppCompatActivity

{

private static final String EXTRA_ANSWER_IS_TRUE =

" answer_is_true";

private boolean mAnswerIsTrue;

...

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_cheat);

mAnswerIsTrue =

getIntent().getBooleanExtra(EXTRA_ANSWER_IS_TRUE,

false);

}

...

}

Listing 3: Using an extra (AnsActivity.java)

Activity.getIntent() always returns the Intent that started the activity. This

is what you sent when calling startActivity(Intent).

Multiple Activities

11

Finally, wire up the answer TextView and the SHOW ANSWER button to

use the retrieved value.

public class AnsActivity extends AppCompatActivity

{

...

private boolean mAnswerIsTrue;

private TextView mAnswerTextView;

private Button mShowAnswerButton;

...

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_cheat);

mAnswerIsTrue =

getIntent().getBooleanExtra(EXTRA_ANSWER_IS_TRUE,

false);

mAnswerTextView = findViewById(R.id.answer_text_view);

mShowAnswerButton =

findViewById(R.id.show_answer_button);

mShowAnswerButton.setOnClickListener(new

View.OnClickListener() {

@Override

public void onClick(View v) {

if (mAnswerIsTrue) {

mAnswerTextView.setText(R.string.true_button);

} else {

mAnswerTextView.setText(R.string.false_button);

}

}

});

}

}

Listing 4: Enabling show answer (AnsActivity.java)

Multiple Activities

12

Getting a result back from a child activity

The AnsActivity can tell the MainActivity whether the user chose to view

the answer.

To get result back from the child activity, call the following method:

public void startActivityForResult(Intent intent, int requestCode)

The first parameter is the same intent. The second parameter is the request

code, which is a user-defined integer that is sent to the child activity and

then received back by the parent. It is used when an activity starts more

than one type of child activity and needs to know who is reporting back.

In MainActivity, modify mAnsButton’s listener to call

startActivityForResult(Intent, int).

public class MainActivity extends AppCompatActivity {

private static final String TAG = "MainActivity";

private static final String KEY_INDEX = "index";

private static final int REQUEST_CODE_CHEAT = 0;

...

@Override

protected void onCreate(Bundle savedInstanceState) {

...

mAnsButton.setOnClickListener(new View.OnClickListener() {

@Override

public void onClick(View v) {

boolean answerIsTrue =

mQuestionBank[mCurrentIndex].isAnswerTrue();

Intent intent = AnsActivity.newIntent(MainActivity.this,

answerIsTrue);

startActivity(intent);

startActivityForResult(intent, REQUEST_CODE_CHEAT);

}

});

Listing 5 Calling startActivityForResult(…) (MainActivity.java)

Multiple Activities

13

Setting a result

There are two overloads to send data back to the parent activity:

public final void setResult(int resultCode)

public final void setResult(int resultCode, Intent data)

Typically, the result code is one of two predefined constants:

Activity.RESULT_OK or Activity.RESULT_CANCELED.

You can use another constant, RESULT_FIRST_USER, when defining

your own result codes.

Setting result codes is useful when the parent needs to take different action

depending on how the child activity finished. For example, if a child

activity had an OK button and a Cancel button, the child activity would set

a different result code depending on which button was pressed. The parent

activity would take a different action depending on the result code.

If setResult(…) is not called and the user presses the Back button, the

parent will receive Activity.RESULT_CANCELED.

Multiple Activities

14

Sending back an intent

To pass data back to MainActivity, create an Intent, put an extra on it, and

then call Activity.setResult(int, Intent) to get that data into MainActivity’s.

In AnsActivity, add a constant for the extra’s key and a private method

that does this work. Call this method in the SHOW ANSWER button’s

listener.

public class AnsActivity extends AppCompatActivity

{

private static final String EXTRA_ANSWER_IS_TRUE

= "answer_is_true";

private static final String EXTRA_ANSWER_SHOWN =

"answer_shown";

...

@Override

protected void onCreate(Bundle savedInstanceState) {

...

mShowAnswerButton.setOnClickListener(new

View.OnClickListener() {

@Override

public void onClick(View v) {

if (mAnswerIsTrue) {

mAnswerTextView.setText(R.string.true_button);

} else {

mAnswerTextView.setText(R.string.false_button);

}

setAnswerShownResult(true);

}

});

}

private void setAnswerShownResult(Boolean isAnswerShown) {

Intent data = new Intent();

data.putExtra(EXTRA_ANSWER_SHOWN,isAnswerShown);

setResult(RESULT_OK, data);

}

}

Listing 6: Setting a result (AnsActivity.java)

Multiple Activities

15

When the user presses the SHOW ANSWER button, the AnsActivity calls

setResult(int, Intent).

When the user presses the Back button to return to the MainActivity, the

ActivityManager calls the following method on the parent activity:

protected void onActivityResult(int requestCode, int resultCode, Intent

data)

Multiple Activities

16

Handling a result

In MainActivity.java, add a new member variable to hold the value that

AnsActivity is passing back. Override onActivityResult(…) to retrieve

it, checking the request code and result code to be sure they are what you

expect.

public class MainActivity extends AppCompatActivity {

...

private int mCurrentIndex = 0;

private boolean mIsCheater;

...

@Override

protected void onCreate(Bundle savedInstanceState) {

...

}

@Override

protected void onActivityResult(int requestCode,

int resultCode, Intent data) {

if (resultCode != Activity.RESULT_OK) {

return;

}

if (requestCode == REQUEST_CODE_CHEAT) {

if (data == null) {

return;

}

mIsCheater = AnsActivity.wasAnswerShown(data);

}

}

...

}

Listing 7 Implementing onActivityResult(…) (MainActivity.java)

Multiple Activities

17

Modify the checkAnswer(boolean) method in MainActivity to check

whether the user cheated and to respond appropriately.

@Override

protected void onCreate(Bundle savedInstanceState) {

...

mNextButton =(Button)findViewById(R.id.next_button);

mNextButton.setOnClickListener(new View.OnClickListener() {

@Override

public void onClick(View v) {

mCurrentIndex = (mCurrentIndex + 1) %

mQuestionBank.length;

mIsCheater = false;

updateQuestion();

}

});

...

} ...

private void checkAnswer(boolean userPressedTrue) {

boolean answerIsTrue =

mQuestionBank[mCurrentIndex].isAnswerTrue();

int messageResId = 0;

if (mIsCheater) {

messageResId = R.string.judgment_toast;

} else {

if (userPressedTrue == answerIsTrue) {

messageResId = R.string.correct_toast;

} else {

messageResId = R.string.incorrect_toast;

}

}

Toast.makeText(this, messageResId, Toast.LENGTH_SHORT)

.show();

}

Listing 8: Changing toast message (MainActivity.java)

Run the app to observe the output.

Multiple Activities

18

 Android OS and activities
The OS starts the application’s launcher activity. The MainActivity is the

launcher activity in QuizApp.

When the New Project wizard created the QuizApp application and

MainActivity, it made MainActivity the launcher activity by default.

Launcher activity s specified in the manifest by the intentfilter element in

MainActivity’s declaration (Listing 9).

<manifest

xmlns:android="http://schemas.android.com/apk/res/android"

... >

<application

... >

<activity android:name=".MainActivity">

<intent-filter>

<action

android:name="android.intent.action.MAIN"/>

<category

android:name="android.intent.category.LAUNCHER"/>

</intent-filter>

</activity>

<activity android:name=".AnsActivity">

</activity>

</application>

</manifest>

Listing 5.18 MainActivity declared as launcher activity

(AndroidManifest.xml)

Opening AnsActivity creates its instance on top of the MainActivity.

These activities exist in a stack.

Pressing the Back button in AnsActivity pops this instance off the stack,

and the MainActivity resumes its position at the top.

Calling Activity.finish() in AnsActivity would also pop the AnsActivity

off the stack.

Multiple Activities

19

Press Back from the MainActivity pops off the stack and you will return to

the last screen you were viewing before running QuizApp.

ActivityManager maintains a back stack and that this back stack is not just

for your application’s activities. Activities for all applications share the

back stack, which is one reason the ActivityManager is involved in

starting your activities and lives with the OS and not your application. The

stack represents the use of the OS and device as a whole rather than the use

of a single application.

