
AUTOMATIC APPROVAL PREDICTION FOR SOFTWARE
ENHANCEMENT REQUESTS

ZEESHAN AHMED NIZAMANI

安木德

2017 年 6 月



中图分类号 : TP311.11
UDC 分类号 : 004.8 

软件增强性需求的自动化预测方法

作者姓名 (中文) : 安木德

指导教师  : 刘辉

学院名称  : 计算机学院

答辩委员会主席  : 牛振东

申请学位 : 硕士

学科专业    : 计算机科学与技术

学位授予单位    : 北京理工大学

论文答辩日期    : 2017/06/05



Automatic Approval Prediction for Software Enhancement Requests

Candidate Name : Zeeshan Ahmed Nizamani

Research Mentor : Prof. Liu Hui

School or Department : School of Computer Science and Technology

Chair, Thesis Committee : Prof. Niu Zhendong

Degree Applied : Masters

Major : Computer Science

Degree Awarding Institute: Beijing Institute of Technology

Date of Defense : 2017/06/05



A
U

T
O

M
A

T
IC

 A
P

P
R

O
V

A
L

 P
R

E
D

IC
T

IO
N

 F
O

R
 SO

F
T

W
A

R
E

 E
N

H
A

N
C

E
M

E
N

T
 R

E
Q

U
E

ST
S



研究成果声明

本人郑重声明:所提交的学位论文是我本人在指导教师的指导下进行的研究工作获
得的研究成果。尽我所知,文中除特别标注和致谢的地方外,学位论文中不包含其经
发表或撰写过的研究成果,也不包含为获得北京理工大学或其它教育机构的学位或
证书所使用过的材料。与我一同工 作的合作者对此研究工作所做的任何贡献均已
在学位论文中作了明确的说明并表示了谢意。

特此申明。

签 名: 日期:

关于学位论文使用权的说明

本 人 完 全 了 解 北 京 理 工 大 学 有 关 保 管 、 使 用 学 位 论 文 的 规 定 , 其 中 包 括 :
(1) 学校有权保管、并向有关部门送交学位论文的原件与复印件;
(2)学校可以采用影印、缩印或其它复制手段复制并保存学位论文;
(3)学校可允许学位论文被查阅或借阅; 
(4)学校可以学术交流为目的,复制赠送和交换学位论文; 
(5)学校可以公布学位论文的全部或部分内容(保密学位论文在解密后遵守此规定)。

签 名: 日期:

导 师 签 名: 日期:



摘要

随着时间的推移，软件应用会出现大量新的需求。这些需求经常以增强性需求
（enhancement report）的形式随其他缺陷报告一起提交到缺陷跟踪系统。这些需求
报告通常需要由开发人员手动检查和确认，需要耗费巨大的时间和精力。为此，本文提
出的一种基于朴素贝叶斯的自动化的预测技术以预测给定的增强性需求是否会被批准。
自动化预测技术的价值包括两个方面。首先，通过该算法，开发人员可根据时间的充裕
程度对改进提案进行分级，从而剔除大量低质量的不太可能被批准的需求；其次，需求
报告的申请人也可以根据预测结果提前修改提案，从而提高获批的可能性。我们从
Bugzilla获取开源软件应用程序的增强性需求报告并进行评估。在评估过程中，对每个
报告进行预处理，并表示为一个向量。将该向量和增强性需求报告的批准状态作为训练
集，训练一个基于贝叶斯的分类器。最后，用该分类器来预测新的增强性需求报告是否
能够通过批准。本文对不同的机器学习算法的性能进行比较，包括多项式朴素贝叶斯、
支持向量机、随机森林和逻辑回归分类器。也将这些算法与神经网络（多层神经网络、
深层置信网络）和深度学习算法进行比较。结果表明，多项式朴素贝叶斯分类器对给定
数据集下具有较高的置信度。我们在 35个开源应用程序的 4万份增强性去修报告上进
行 10折交叉验证，结果表明其平均准确度高到 89.25%。

关键词: 软件需求、预测、机器学习、文档分类
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Abstract

Software applications often receive a large number of enhancement requests that suggest
developers to fulfill additional functions. Such requests are usually checked manually by the
developers, which is a time consuming and tedious task. Consequently, an approach that can
automatically predict whether a new enhancement will be approved is beneficial for both the
developers and the enhancement suggesters. The benefit of such approach is two-fold. First,
with the approach, according to their available time, the developers can rank the reports and
thus limit the number of reports to evaluate from large collection of low quality enhancement
requests that are unlikely to be approved. The approach can help developers respond to the
useful requests more quickly. Second, reporters of the enhancements may revise the reports in
advance to improve the chance of approval. To this end, we propose a multinomial naive Bayes
based approach to  automatically predict  whether  a new enhancement  report  is  likely to be
approved or rejected. We acquire the enhancement reports of open-source software applications
from Bugzilla for evaluation. Each report is preprocessed and modeled as a vector. Using these
vectors with their corresponding approval status, we train a Bayes based classifier. The trained
classifier predicts approval or rejection of the new enhancement reports. We applied different
feature vector modeling approaches for textual data modeling to evaluate the performance of
machine  learning  algorithms,  including  multinomial  naive  Bayes,  support  vector  machine,
random forests and logistic regression classifiers. These algorithms are compared with neural
networks and deep learning algorithms including multi-layer neural networks and deep belief
network, and it turns out that the multinomial naive Bayes classifier yields the highest accuracy
with the given dataset. The proposed approach is evaluated with 40,000 enhancement reports
from 35 open source applications.  The results  of  ten-fold  cross  validation  suggest  that  the
average accuracy is up to 89.25%.

Keywords: Software  Enhancements,  Approval  Prediction,  Machine  Learning,  Document
Classification
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Chapter 1
INTRODUCTION

This chapter introduces the enhancement type software issue reports and the problem of predicting
the resolution status for the new reports. Section 1.1 briefly presents the software enhancement re-
ports and their classification. Section 1.2 presents the proposed machine learning based automated
classification approach for the reports. Section 1.3 briefs the evaluation and contributions.

1.1 Software Feature Enhancements
New feature enhancements to software applications are inevitable. A software needs to adapt to
an ever changing environment and fulfill user requirements, and these requirements change over
time [9, 38]. Hence new feature enhancements become necessary for the success of the software
due to evolving user requirements and changing technologies [40]. A non-trivial software, there-
fore receives a number of suggestions about adding new feature enhancements and improving the
existing ones.

Non-trivial software applications planned for use in different domains can usually not be com-
pletely specified in advance in terms of their functional and non-functional requirements [31].
Hence an application cannot be implemented once and for all. The subsequent maintenance and
enhancement work of a software is a continual process driven by its deployment outcomes, the
advances and growth in the application domain, adaptation to changes in the external world and
the users and stakeholders feedback. The new enhancements are incorporated in a software project
maintenance patches and new version releases. Such enhancements help keep the software relevant
and may encompass different purposes such as:

• Introduce new feature extensions in the application.

• Improve the application systems’ performance, processing efficiency, and maintainability.

• Adapt the software system to changes for new data and processing environment.

Large software projects generally receive a significant number of issue reports [37]. Such soft-
ware applications generally use an issue tracking system or bug repository for filing and managing
different types of issues or bug reports. The feature requests are special kind of issue reports
called enhancements. Such reports for a project suggest the developers and maintainers, a change
or upgrade that raises a software’s capabilities beyond the original specifications. To request an
enhancement in a software project, an enhancement suggester writes a report to describe the en-
hancement. In issue tracking systems, enhancement requests are taken as a special kind of issue
reports. Consequently, enhancement requests are often called enhancement reports as well.

The empirical study of the issue reports statistics shows that the enhancement reports account
for a sizable portion of the total issue reports filed for an application. We observed the statistics
for Thunderbird product between 2000-01-02 and 2005-12-24, in which out of 10,000 bug reports,
1,857 reports were enhancements, which account for 18.57% of all types of issue reports. This
data suggests that enhancement requests represent a meaningful number of all issue reports and
a non-trivial software application is subject to a number of enhancements. Rest of the types of
bug severities for the issues filed for Thunderbird during the same period are represented by these
number of reports: blocker:127, critical:840, major:1202, normal:4757, minor:888, trivial:323.
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1.2 Background
After releasing a software application, the developers have to deal with a myriad of bug and en-
hancement requests [6]. Managing such reports among the developers, and making sure that each
of these bug reports or feature enhancement requests is properly handled is a effort taking activity.
Issue or bug reporting and management using an issue tracking system is a standard practice in
software development. However, many bugs reported for an application are low quality, leading to
rejection of such reports.

The problem of the low quality reports which may lead to rejection of these reports, often arises
because the enhancement reporters of the software are not fully aware of the history, environment,
functionality and technical limitations associated with the software. This leads to the mismatch
between what the developers expect and what the reporters provide [72]. Consequently, the re-
porters end up proposing poorly written enhancement reports and the software maintainer ends up
evaluating many such reports that are not fixable thus wasting his time and efforts. Anvik et al. [3]
analyzed general bug reports of Firefox application between May 2003 and August 2005 and found
that 56% reports of Firefox are not fixed, while out of remaining 44%, only 11% are fixed leaving
33% open bug reports. This suggests that a majority of the issue reports are not fixed. Not all of
the enhancement reports will be finally approved. The enhancement reports dataset in our dataset
also has a similar statistics with most of the reports not approved. By analyzing the enhancement
reports from the 35 applications we find that around 75% of the reports are not approved.

Although, the developers have to ultimately evaluate the reports manually before assigning and
implementing the enhancements, there are benefits of having an automated approach:

1. First, it can help developers response to useful enhancement reports quickly. Sizable soft-
ware applications often receive a large number of enhancement reports, among which only a
small part will be adopted. It may take a long time for the developers to read and respond to
such a large number of reports. As a result, some important and useful enhancement reports
cannot be handled in time. However, if an automated approach can rank the reports and help
developers to pick up a small number of reports that are most likely to be approved, such
more valuable reports could be handled much more quickly.

2. Second, it can help reporters to improve their enhancement reports before submission. By
using the automated system, the suggesters can get an idea of whether the recommended
enhancement is likely to be approved or not and hence be able to rework the request before
submission. This would in turn translate into less but better quality enhancement reports.

Implementation of a new software enhancement may potentially bring in new bugs. Some
modules in the software are more risky for bugs than the others depending on the enhancement.
Relationship between the functional enhancement activity and the resulting distribution of software
defects has been exploited to develop a model to identify high-risk program modules [28].

Machine learning based approaches have been successfully applied in classifying different
kinds of software documents. Quite a few approaches have been developed for software bugs
classification [18, 20, 44]. Approaches have been applied to solve the problem of predicting issue
reports as bug or non-bug [48] and duplicate bug report classification [7,32,50] using the machine
learning algorithms. The technique for duplicate issue detection using the similarity measures of
word frequency has shown effective performance [29]. These solutions save the developer time

2



and improve the development efficiency. The approaches to solve these problems have shown high
accuracy in predicting bugs severity, bug or non-bug report classification and duplicate bug report
identification.

The existing applications of machine learning algorithms on software documents suggest that
it is potentially practical to apply such algorithms to predict the approval of software enhancement
reports. However, to the best of our knowledge, there is no existing approach specifically designed
to predict the approval of the enhancement reports. To this end, in this work, we propose an
automatic approach to predict the software enhancement reports’ approval.

A number of important studies and approaches to triage and automate tasks specifically for
the non-enhancement type bug reports have been conducted and achieved significant performance.
The existing applications of machine learning algorithms on software issue reports that use textual
features [48] support practicality of these algorithms to predict the approval of software enhance-
ment reports. Wang et al. [57] applied natural language processing techniques to suggest a list of
most similar existing reports to the new report. The technique for duplicate issue detection using
the similarity measures of word frequency has shown effective performance [29]. Duplicate en-
hancement requests for an application account for a noticeable portion in the total reports set, but
since there have already been a number of studies on duplicate detection, we do not specifically
deal with this problem in our study.

1.3 Approval Prediction Approach
Since a large of enhancement reports filed in large software applications consume a lot of valuable
time of developers, we propose a supervised machine learning based approach to automatically
predict the approval of software enhancement requests. The enhancement reports are acquired
from an issue tracking system. Such reports are preprocessed to lower-case the reports’ description
text, remove non-dictionary words and punctuations, and lemmatize the words. The lemmatized
words are used as features to model the description text of reports as feature vectors. A portion
from the set of feature vectors corresponding to the enhancement reports text are used to train a
supervised learning classifier. The trained classifier is tested on a different portion of reports from
the feature vectors set to evaluate the performance of the approach.

The approach is evaluated with 40,000 enhancement reports from 35 open-source software
applications. The results of ten-fold cross validation suggest that the approach is accurate. The
accuracy of the classifier evaluation is up to 91.15%, and the average accuracy is up to 89.25%.
The Bayes based approach averaged precision, recall, and f1-score of 84.99%, 63.26% and 72.53%
respectively. We further compare the approach with re-sampling of the dataset since a large pro-
portion of reports are rejected which makes the dataset imbalanced. The results of re-sampling
suggests that the overall performance does not improve by under-sampling the dataset.

The major contributions of this work include the following:

• An automatic approach to predict the approval of the new enhancement reports.

• Evaluation of the approach with data from open-source applications. Evaluation results sug-
gest that the approach is accurate.

Rest of the thesis is organized as follows. Chapter 2 discusses related work. Chapter 3 presents
the proposed approach. Chapter 4 covers the experimental setup, evaluation and results. Finally,
chapter 5 concludes the thesis and discusses future work in this direction.

3



1.4 Summary
This chapter presents the motivation for the problem of software enhancement reports approval
and some background on software issue reports. The chapter further outlines the contributions of
the this work towards the research, an automated approach predicting the approval or rejection of
software enhancement reports and evaluation of the approach with open-source applications data.

4



Chapter 2
SOFTWARE ISSUE REPORTS CLASSIFICATION

This chapter covers some of the important related work in application of machine learning in
software bug reports handling. Some of the important related applications of machine learning
classifiers are covered in the first part. Application of machine learning in automation of software
issue reports handling are discussed in section 2.2. The following subsection covers the detection
of duplicate issue reports detection.

2.1 Machine Learning Based Classifiers
For text based document classification problem where manually categorized history data is avail-
able, a range of supervised machine learning classification models can be used [35, 39]. Some of
the popular classifiers include decision tree, support vector machine, naive Bayes and neural net-
works [26, 35]. These classifiers categorize the text documents into predefined classes by building
a classification model from history data.

The naive Bayes classifier is one of the top ten text classification algorithms [22, 60], which is
a probabilistic learning model. The classifier assumes all the features are fully independent in a
given class [56]. The classifier simplifies learning with this assumption and often produces results
comparable to the sophisticated classifiers.

Support vector machine is one of the most popular text classification models [22]. The classifier
is a predictive model for the classification problems. Support vector machine classifier categorizes
the input data into two classes by determining a hyper-plane that maximizes the separation between
the classes [47].

Decision tree classifier is a simple non-parametric supervised learning algorithm which gener-
ates a model (decision tree) to predict the class of the new document by learning simple decision
rules from the data features. Each non-leaf node in the decision tree is a condition over a feature
and each branch represents the outcome of the condition. A leaf node is a class label which is the
final class predicted by the classification model.

A binary text classifier assigns one of the two classes to each text document. Some of the
applications of binary classifiers include the Spam content filtering for emails [17,45,69], SMS [13]
and social media [25]. Moraes et al. [34] applied the binary classifiers in sentiment detection
to classify product reviews as positive or negative. The classifiers have also been successfully
applied to detect the inappropriate contents by search engines [12]. Such accurate and efficient
machine learning classifiers make it possible to classify the enhancement reports. These effective
classification algorithms provide the basis for our approach.

2.2 Automated Handling of Software Documents
Bug reports are an important part of software development and maintenance life-cycle. The re-
ported bugs are triaged to classify their severity, approval status, priority, developer assignment
and other such tasks. A misclassification of the reports in these tasks incurs both development time
and costs. The reports are usually manually examined for such classification, which is often time
consuming and tedious for the developers.

Machine learning based classifiers have been successfully applied to different kinds of software
documents, e.g., bug reports. The problem of bug report misclassification was identified by An-
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toniol et al. [2] to distinguish bug reports. The authors built three classifiers using decision trees,
naive Bayes and logistic regression to distinguish bugs from non-bugs on Mozilla, Eclipse and
Jboss projects, with a precision ranging from 77% to 82%. The machine learning techniques have
been applied to predict the severity of issue reports on open-source projects [27,43]. The goal was
to classify the severe and non-severe bugs. The authors applied naive Bayes based algorithms to
predict the bug report severity. According to their study, the naive Bayes produced optimal results
and is therefore a suitable binary classifier for classifying the bug reports. Pingclasai et al. [39]
proposed the topic modeling approach to classify the bug reports using three classification meth-
ods of decision tree, naive Bayes classifier and logistic regression to get the most accurate model.
Their results suggested that the naive Bayes classifier produced the most accurate and efficient
classification model.

Zhou et al. [71] proposed a machine learning based approach that combines text mining and
data mining techniques for the bug report classification. In their two stage technique, text mining
is used first to analyze the summary of bug reports. Secondly, the extracted features of bug reports
are used to train the machine learning algorithm and finally data grafting techniques are used to get
final classification results of the two stages. Their experiments show a better overall performance
than the previous studies on the same data.

The problem of automatically locating the source code files that need to be changed in order to
fix the bugs has been addressed by Zhou et al. [70]. The authors proposed an information retrieval
based method BugLocator, to rank the files using the textual similarity between the initial bug
report and the source code that uses the information about similar bugs fixed before.

The bug assignment is the problem in which the issues reported requiring resolution, need to
be assigned to a developer with the responsibility of resolving the issue. Automatic approaches
for assignment or tossing of the bugs reports to developers have been extensively studied [4,8,23].
Anvik et al. [5] proposed a semi-automated machine learning based algorithm for the assignment
of reports to relevant developer. The algorithm learns the kinds of reports each developer resolves
from the bug repository and builds a classification model. For a new bug report, the classifier
short lists a small number of developers relevant to resolve the bug achieving a precision levels
of 57% and 64% on Eclipse and Firefox respectively. A user activity profile based bug report
assignment technique have been proposed by Naguib et al. [36] to assign a bug to appropriate
developer. In their formulation, user activity profile for every developer is formed based on his
activities including reviews, assignment and resolution that suggest the user’s involvement in the
project and his expertise.

The work by Lamkanfi et al. [27] aims to help developers distinguish sever bugs from non-
severe to resolve them first. Their automated approach scales down multiple levels of severity into
two classes; sever and non-severe to classify new bug reports into one of these two categories. In
our problem similarly, we have multiple resolution classes for enhancement reports which we scale
down to two; approved and reject. From the enhancement reports, we only label fixed reports as
approved and others reject. Our goal is to separate and list the approved reports from rejected and
hence assist the developer and enhancement suggester in predicting the likelihood of approval.

Due to limited resources availability, bug reports resolution work is often affected by their
priorities. To automatically recommend priority level for a bug report, a machine learning based
approach called DRONE has been proposed [54]. The system recommends a priority level based
on the information including text, reporter, severity, related reports, and product. These factors

6



treated as features are used to train a new discriminative classification model. The experimental
results of this approach on Eclipse project show an improvement in F-measure of 58.61% over
baseline approaches.

2.2.1 Duplicate Issue Detection

Bug reporting is often prone to duplication. For a new bug report filed, there are chances for an-
other similar bug report already present in the system, describing the same problem. These similar
bug reports are classified as duplicates of each other. Duplicate enhancement reports contribute
noticeably in the total reports filed. Duplicate bugs consume valuable time of developers while be-
ing difficult to pinpoint when the subject application is sufficiently large sized with a huge number
of issue reports. Manually going through a pile of existing reports to detect duplication is a tedious
effort. In this study, we do not specifically handle this problem as

1. Duplicate issue detection usually requires measuring similarity of an issue report with the
collection of already existing reports and ranking most similar issues. Since this approach is
different from our machine learning based approach, we only address whether a new reported
would be approved or rejected.

2. The problem to detect duplicate issue and rank similar issue reports has been covered by a
number of approaches [7, 21, 52]. These approaches have shown reliable performance and
hence can be leveraged in the domain of the enhance reports.

Yang et al. [63] evaluated the influence of three feature selection schemes with the multinomial
naive Bayes classifier to predict the severity of bug reports. The experimental results conducted
on four open-source components from Eclipse and Mozilla show that feature selection schemes
can affect and improve the predication performance. TakeLab system [46] automates semantic
similarity measure of short text documents using supervised machine learning. Using the TakeLab
system, Lazar et al. [29] presented an improved method to detect duplicate bug reports that uses
textual similarity features.

Sun et al. [50] proposed FactorLCS technique that takes into account the sequential order of the
words to detect duplicate issue reports. Enhanced support vector machine model approach using
the manifold textual and semantic correlation features is proposed by Lin et al. [32] for duplicate
bug detection. The approach achieves improvements between 2.79% to 28.97% in evaluation.
Tian et al. [53] measured the text similarity between new bug reports and multiple existing reports
to predict whether the new bug report is a duplicate bug. This approach trains a support vector
machine classifier with repeated reports to learn the similarities. Feng et al. [16] proposed profile
information of the bug reporter to improve the accuracy of the existing approaches in detecting
duplicate bugs.

DupFinder et al. [52] is an integrated duplicate bug report detection tool that is implemented as
a Bugzilla extension. The tool uses texts from summary and description fields of a new bug report
and recent bug reports present in a bug tracking system, employees vector space model to scale the
bugs similarity and lists duplicate bug reports based on the similarity of these reports with the new
bug report.

Such machine learning based approaches suggest that it is viable to apply the supervised ma-
chine learning classifiers to the problem of predicting approval or rejection of the software en-
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hancement reports. The existing approaches of the software documents classification have shown
high performance. However these approaches are not designed to handle the approval prediction
of software enhancement reports.

2.3 Summary
This chapter covers some of the prominent research studies on automated handling of software bug
reports. The major works include application of machine learning in bug reports classification,
automated triaging of the bugs reported and the duplicate issue reports detection. These machine
learning based approaches have shown reliable results and thus are helpful in software development
process.

8



Chapter 3
APPROACH

This chapter proposes the approach devised for automated software enhancement reports classifi-
cation into either approved or rejected class. Section 3.1 presents the problem definition in terms of
enhancement report and classification function that assigns corresponding class to the report. Sec-
tion 3.2 shows the overall approach from reports data extraction and preprocessing to classification
of the reports. Section 3.3 shows the enhancements data collection, organization and preprocessing
steps. Section 3.4 shows the way the preprocessed data is converted into feature vector form for
machine learning algorithms to use. Finally Section 3.5 shows building a naive Bayes classification
model on the training data and use it to classify new reports.

3.1 Problem Definition
The proposed approach in this paper predicts whether a new enhancement report will be approved
or rejected. We define the problem of enhancement report approval prediction as the machine
learning based binary classification problem that classifies the new enhancement reports into two
classes: approved and rejected. The classification function f to predict new enhancement report r
into a classification category c, is given by

c = f(r); c ∈ {approve, reject} , r ∈ R (3.1)

Where c is the outcome class which can be either approve or reject, f is the classification function
that predicts the approval of the report and r is the new enhancement report input to the classifier.
The classification function f is obtained by training a supervised learning classifier.

Typically there are more than two types of resolutions for enhancement reports on an issue
tracking system. However, only the fixed resolution issues are the ones that approved for imple-
mentation. Rest of the reports with other resolution types are not approved due to reasons like
duplicate or invalid enhancement. Thus we classify fixed type reports as approved while the rest as
rejected.

3.2 Overview
Overview of the approach is presented in Figure 3.1. The proposed approach to predict the ap-
proval of enhancement report has two main phases.
In the first phase, the enhancement reports are acquired, preprocessed and modeled. Such en-
hancement reports are extracted from an issue tracking system. The issue tracking systems usually
provide interfaces to access the reports from their repositories. The enhancements corpus is pre-
processed to partition the reports into two classes (approved and rejected). Each report is converted
into a feature vector form to input in a classifier.
In the second phase, a classifier is trained to classify new enhancement reports. The vectors of
enhancement reports and their corresponding labels are used to train the classifier. The resulting
classifier is then applied to vectors of new enhancement reports to predict the approval or rejection
of each test report.
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Figure 3.1: Supervised machine learning based prediction approach

Figure 3.2: Enhancement report on Bugzilla

3.3 Data Collection and Preprocessing
The bug reports data is usually stored and managed on issue tracking systems. Issue tracking
system keeps track of software application issues, allowing the users to submit issue reports for
software, while facilitate the developers and maintainers to collaborate on those issue reports by
making comments.

3.3.1 Raw Enhancement Reports

The enhancement reports are acquired from Bugzilla. An enhancement report submitted to issue
tracking system has many attributes associated with it. Figure 3.2 shows a graphical view of an
enhancement report of an application submitted to Bugzilla. Some of the attributes of enhance-
ment report include identification number, title, the product for which the report is submitted, time
stamps when it is reported and modified, reporter, developer assigned to resolve the issue, res-
olution, description of the report , and additional comments. The resolution status of the report
indicates whether the enhancement has been approved or rejected. The first comment contains the
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description of the enhancement requested.
In our approach, the text features are selected from the enhancement reports’ description for

the approval prediction. The textual description defines what feature enhancement is requested and
thus is an essential parameter for approval decision.Approaches on different bug reports classifi-
cation tasks using textual features as input have shown reliable performance suggesting that these
text features are effective in the issue reports classification [27, 43, 62]. Other factors, e.g., avail-
able resources, budget, and business concerns are also essential parameters of approval decision.
However, it is challenging to obtain and quantify such factors from a large number of applications,
which makes it difficult to figure out the quantitative relationship between the approval decision
and these factors.

3.3.2 Preprocessing

Preprocessing is an important step for text classification since it improves performance of the
classification approach [1]. The steps of preprocessing are summarized in Figure 3.3.

A report is first tokenized into individual words. The report text is split on the white spaces
and punctuations to generate word tokens. The non-dictionary words are removed from the word
tokens obtained from tokenization. The resulting words are converted into lower case. The words
are then lemmatized to convert each word to its dictionary base form. The letters in the words
are normalized into lower-case so that the classifier treats as the same, a capitalized word and its
non-capitalized form. For instance, the word ’Edited’ is changed to ‘edit’ which is both the word’s
base (lemmatized) and lowercase form. The lemmatized words from all the reports arranged in
alphabetical order, are selected as the features set.

An enhancement report is represented by a set of features to be processed by the classifier. A
feature selection scheme is important for the performance of the classifier. A text feature selection
scheme specifies criteria for measuring how informative each word is, to extract the important
features. Some machine learning based classifiers including naive Bayes are sensitive to feature
selection [10, 59].

For preprocessing and feature selection, we used the lemmatization API to get the features from
the reports’ text. A report is lemmatized and returned containing lemmatized word features used in
the report. The API performs the preprocessing steps of words tokenization, non-dictionary words
removal, lower-case conversion and lemmatization. The punctuations and the numbers used in the
original reports are eliminated in the lemmatization process. The lemmatized reports are saved and
subsequently used for the feature vector modeling of reports. The words from all the lemmatized
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reports are saved in the features vocabulary. The vocabulary contains each unique word that has
occurred in the reports dataset.

Text classification often involves high dimensional and sparse data features [49]. Lemmatiza-
tion reduces the number of the features and thus the size of the feature vectors. The reduction of
the feature vectors size improves the efficiency of the approach. Using the lemma form of words
reduces the chances of a word occurring in the training set in one form, but occurring in test report
in a different form, thus being treated as two different features.

3.4 Vector Space Model
The textual reports are converted into feature vector model [64], which is a compact representation
that consists of all the unique features extracted from the enhancement reports. Each report in
the lemmatized reports set is converted into a vector according to the feature vector model. The
mapping process is applied to both the training and test reports in the corpus.

A feature vector v is defined as,

v = {c, f1, f2, . . . fn} (3.2)

Where v is the feature vector representing an enhancement report d, c is the class label that
takes either 1 or 2 value identifying whether the report is approved or rejected respectively, and
f1, f2, . . . fn are the set of features each corresponding to the words in the features vocabulary.
We use term frequency (TF) to represent features in a feature vector. If a feature is present in
the report, it is represented by the number of times (N) it appears in the report, otherwise it is
represented by 0 according to the following condition

fi =

{
0, if ith feature is absent
N, if ith feature appears; N>0

(3.3)

The feature number i is the feature’s respective index number in the lemmatized unique words
list created from the lemmatized reports corpus. The input vectors to classifier are report feature
matrix where the columns are the features and rows are the report vectors [11]. We model all the
reports according to the equation 3.2.

3.5 Multinomial Naive Bayes Classifier
The classification method has a significant impact on the accuracy of the text classification ap-
proach [51]. Given a set of report (d1, . . . , dn), each report represented by the features vector v
and belonging to a known class c, the aim is to construct a classification model f that allows to
assign new unlabeled enhancement report to a class c [68].

The multinomial model is considered better and efficient classification model than the multi-
variate Bernoulli model [56]. Multinomial naive Bayes keeps track of the frequency of words in the
feature vectors representing the reports [15, 24]. For a test report d, represented by feature vector
< w1, w2, . . . , wn >, multinomial naive Bayes uses the equation below to classify the report.

cMNB(d) = P (c)
n∏

i=1

P (wi|c)fi (3.4)
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Where P (c) is the prior probability that the report d occurs in the class c, n is the number of
features, wi is the ith word occurring in the report d, P (wi|c) is the conditional probability that the
word wi occurs in the class c, fi is the frequency count of word wi in the report d, C is the set of
all possible class labels c and cMNB(d) is the class label of the report d predicted by multinomial
naive Bayes.

P (c) of a class c is the prior probability of the class. If Ndoc is the total number of training
reports belonging to class c and Tdoc is the total number of reports in the corpus, then P (c) is
calculated as,

P (c) =
Ndoc

Tdoc

(3.5)

Each report belonging to category c is grouped into respective class. The multinomial naive
Bayes classifier uses the frequency of the word wi in all the reports of each class to get the maxi-
mum likelihood estimate of the probability for the class as,

P (wi|c) =
count(wi, c)∑
w∈v count(w, c)

(3.6)

Murphy and Cubranic [35] used the set of text words that from the bug report’s summary and
description fields. Authors used term frequency of words in the text to model the text documents
into vector form and applied multinomial naive Bayes classifier to automatically assign bug reports
to relevant developers. Their framework treats the dataset as a collection of documents D and each
document has a class label c from a set of predefined classes. Although the naive Bayes feature
independence assumption does not apply in many real-world situations, yet the empirical results
suggest the classifier performs optimally considering the assumption not entirely unreasonable
[14].

Despite the simplified assumption of features independence, the naive Bayes classifiers are
shown to have sound theoretical reasons for their competitive performance [67]. Decoupling of
the class conditional feature distributions makes it possible for each of the features to be estimated
independently as a one-dimensional distribution. Since our dataset has spacial feature space, this
property of Bayes based classifier handles the problems of sparseness and high dimensionality,
such as the need for datasets that scale directly in proportion with the number of features. Fur-
thermore, the classification accuracy of the naive Bayes classifier is not directly affected by the
degree of feature dependencies measured in terms of the class-conditional mutual information be-
tween features [41]. Such characteristics of naive Bayes model apply to our dataset and the binary
classification problem, make it optimal for our approach.

3.6 Summary
In this chapter, the enhancement prediction problem and the approach is formally defined. The
enhancement reports data is acquired from issue tracking system. The reports’ text is preprocessed
and modeled as feature vectors. A part of feature vectors are used to train Bayes based super-
vised classification model to generate the classifier. The classifier thus formed is evaluated with a
different part of the dataset to test the performance.
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Chapter 4
EVALUATION

The enhancement reports acquired from Bugzilla are preprocessed and converted to feature vec-
tors. We applied different machine learning classifiers to train on our dataset. The training models
generated from the classifiers’ training are applied to the test dataset to evaluate the performance
of the approach. We further evaluate the performance of neural networks and deep learning algo-
rithms on our dataset. It turns out that with relatively small size of our dataset, the neural network
performs poor than multinomial Naive Bayes, but if the dataset size is large enough, the algorithm
can outperform the multinomial naive Bayes classifier.

The original enhancements dataset acquired from Bugzilla is imbalanced which may affect the
classifiers performance. To compare the performance with original imbalanced dataset, we also
performed re-sampling of the dataset by under-sampling the reject class since it is almost three
times the approve class. To perform the re-sampling, we made the number of rejected reports
in each application nearly equal to approved by removing some rejected reports. For instance,
Bugzilla application had 2197 approved reports in the original dataset, and 3537 rejected. After
under-sampling the reject class reports, we retained 2197 rejected reports while discarding the
remaining 1340 reports for the project. The full dataset after re-sampling has total 21317 reports
with 11072 rejected reports making it roughly balanced. We compare the original dataset results
against re-sampled data in the Bayes based approach and other classifiers models.

4.1 Research Questions
While evaluating the proposed approach, we address the following research questions.

• RQ1: How accurate are different machine learning algorithms in predicating approval, and
which one is best?

• RQ2: Can re-sampling techniques improve the performance of the approach? If yes, to what
extent?

• RQ3: Which words should be avoided to increase the likelihood of approval?

• RQ4: How long does it takes to train the classifier and classify new reports, respectively?

The research question RQ1 evaluates performance and reliability of our approach in predict-
ing a new report’s approval using different machine learning algorithms, i.e., multinomial naive
Bayes, decision tree, random forests, logistic regression, and neural networks. Such techniques
are selected for comparison because they are popular and accurate in binary classification of text
documents [22, 26, 60].

Research question RQ2 evaluates the performance of our Bayes based approach on the re-
sampled dataset to assess the effects of balanced classes on classification performance. We perform
and compare re-sampling on our original dataset since it is imbalanced with approximately 75%
of the reports are rejected, which may affect the classifiers’ bias towards overrepresented class.

To help improve writing new enhancement reports, in research question RQ3 we explore the af-
fects of words on resolution of the reports. We calculate the likelihood of different words affecting
the reject probability of the enhancement reports.
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The processing time is an important factor in prediction since if the approach takes longer to
predict report approval than the developer, it will not be very useful. The research question RQ4
measures the time factor of the approach for training and approval prediction.

4.2 Dataset
There are quite a few standard issue tracking systems out there. Some of the most famous and
widely used of them include Redmine, Jira and Bugzilla. Jira is a commercial license based appli-
cation so we did not consider using the system for our evaluation. These systems do have many
peculiar features of their own but the common life cycle of bug reports is more or less similar. Since
our approach is based mainly on the enhancement reports’ text, choosing one issue tracking sys-
tem over the other hence, does not noticeably affect the results. We chose Bugzilla for data for the
evaluation since it is one of the most popular issue tracking systems for open-source applications.
Furthermore, a number of large open-source projects including Firefox, use Bugzilla for their is-
sues tracking. Bugzilla also provides a REST API to easily access to bug reports of open-source
applications. We hence used Bugzilla issue tracking system for the data in our approach.

4.2.1 Data Retrieval

To acquire the data, we extracted the enhancement reports of open-source software applications
from Bugzilla1. Bugzilla is a general-purpose bug and issue tracking system. Using the Bugzilla
REST API2, we wrote a nodejs script (available online3 ) to access the enhancement reports by
specifying severity level as enhancement in the Bugzilla REST API. We specify severity type of
enhancement in the URL to distinguish the feature enhancement requests from the bug reports and
thus retrieve only enhancement reports. The text of the first comment of an enhancement report has
a detailed description of the report which is separately extracted using the enhancement report ID4.
We treat and refer this detailed description as the enhancement report in our approach since this
field represents the requested enhancement in detail by the suggester. In evaluation, we only used
the enhancement reports that have been resolved as either fixed or rejected, discarding the open
reports that are not yet decided. The approach is generalizable to the other issue tracking systems
by using the appropriate resolution and report description fields, specific to the issue tracking
system being used.

The resolution field returned in an enhancement reports from the Bugzilla API specifies whether
the enhancement report is approved or rejected. In Figure 3.2, resolution is presented as the Status
field. If the resolution resulted in a change to the code base, the enhancement report is resolved
as fixed. A report is resolved as invalid if it is not a proper enhancement. A report is expired if
it is in needinfo status requiring additional information, and the reporter fails to provide the rel-
evant information for more than six months. As there are multiple resolutions of the reports, we
reduce this multi-class resolution problem to binary classification problem by treating the report as
approved if its resolution is fixed and categorize rejected otherwise. Note that we do not include
the newly submitted reports in the dataset whose resolution is not defined since we do not know
whether they will be approved or rejected.

1https://bugzilla.mozilla.org/, verified 26/02/2016
2https://bugzilla.mozilla.org/rest/bug?severity=enhancement, verified 26/02/2016
3https://github.com/shanniz/Bugzilla
4https://bugzilla.mozilla.org/rest/bug/426904/comment, verified 26/02/2016
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Table 4.1: Open-source applications for evaluation

Application Total Reports Domain Approved Rejected
Bugzilla 4697 Issue tracking system 2197 2500
Calendar 1505 Desktop calendar 439 1066

Camino Graveyard 1168 Mac OS X browser 344 824
Core 7223 Web browser components 2754 4469

Core Graveyard 1026 Core components 259 767
Firefox 6793 Web browser 896 5897

MailNews Core 2050 Mail and news components 376 1674
SeaMonkey 7922 Internet application suite 883 7039
Thunderbird 3934 Email client 398 3536

Toolkit 1678 APIs 380 1298

We collected the enhancements data for the open-source applications from Bugzilla. The sig-
nificance of an issue report on Bugzilla is a composite of its priority and severity levels. The
priority for the issue is decided and set by the maintainers or developers who plan to work on
the bug, not by the one filing the issue report. General to issue tracking systems and specific to
Bugzilla, the defined priority can have the values of Immediate, Highest, High, Normal and Low.
Bugzilla allows to set these priorities with values from P1 to P5 respectively.

The severity field defines the nature of filed issue report in an issue tracking system. Bugzilla
specific types of severity for a an issue report are Blocker, Critical, Major, Normal, Minor, Trivial
and Enhancement. Except for enhancement type, other categories of severity are bugs. The en-
hancement type issue is a request for a new feature or modification in functionality for a current
feature. The severity field gives a high level view of the nature of an issue report and combined
with priority field further signifies importance to resolve the issue.

For the most part, the domain of the open-source applications obtained from Bugzilla is desktop
applications for Internet. The top applications with most number of enhancement reports in our
dataset are listed in Table 4.1. The number of approved and rejected reports for each of the top
products is summarized in the table.

4.2.2 Reports’ Status

The reports extracted for the evaluation have their status verified or closed. Since for supervised
classification system, the data has to be pre-classified, we extracted the enhancements which have
already been resolved by the developers as fixed or rejected.

The resolution of an enhancement request is specified in resolution field. A total of 8 types
of resolution are possible for the enhancement reports in Bugzilla. They include DUPLICATE,
EXPIRED, FIXED, INCOMPLETE, INVALID, MOVED, WONTFIX, WORKSFORME. The
FIXED type is the approved enhancement report, while others are not approved. Since only the
FIXED enhancements are approved for implementation, leaving the rest unimplemented, we clas-
sified a report as fixed if its resolution is fixed, and classified non-fixed for other resolutions. Thus
we have only two classes of reports reducing the problem to binary classification. The total number
of enhancement reports in our dataset from Bugzilla, for each type of report is shown in Table 4.2.
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Table 4.2: Number of reports for each resolution type

Resolution Number of Reports
FIXED 10020

INVALID 2621
DUPLICATE 15784
WONTFIX 7170

WORKSFORME 2501
INCOMPLETE 610

EXPIRED 1291
MOVED 4

Table 4.3: System configuration for evaluation

Resource Configuration
Processor Intel® CoreTM i5-7200U CPU @ 2.50G x 4

RAM 16 GB
OS Ubuntu 16.10, 64-bit

Kernel 4.8.0-46-generic Kernel

4.3 Metrics
We use accuracy, precision and recall to evaluate performance of the classifiers. Accuracy mea-
sures the proportion of all correct predictions. Precision calculates the number of actual true posi-
tive outcomes out of all positive predictions. Recall measures the number of true positives returned
by classifier from the total number of true positive cases. F1-score is the average of precision and
recall.

Mathematically, these metrics are defined as follows

Accuracy =
(TP + TN)

(TP + FN + FP + TN)

Precision =
TP

(TP + FP )

Recall =
TP

(TP + FN)

F1− Score = 2 ∗ (Precision ∗Recall)

(Precision+Recall)

Where TP (True Positive) is the number of approved reports predicted as approved. TN (True
Negative) is the number of rejected reports, predicted correctly. FN (False Negative) is the number
of approved reports predicted as rejected. FP (False Positive) is the number of rejected reports
predicted as approved. The experimental evaluation of the approach is performed on the system
with the hardware and software specifications shown in Table 4.3.
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4.4 Process
The evaluation is carried out as follows. First, the enhancement reports (notated as ER) of the
open-source projects are retrieve from Bugzilla issue tracking system and converted into feature
vector form. Second, based on ER, we carry out a ten-fold cross validation. We randomly partition
ER dataset into ten equally sized groups denoted as Gi (i = 1 . . . 10). For the ith cross-validation,
we consider all reports except for those in Gi as the corpus of training data, and use the reports in
Gi as the testing data.

For the ith cross-validation, the evaluation is performed as follows:

1. First, we extract all reports trainingDatai from training dataset that is the union of all
groups but Gi.

trainingDatai =
⋃

j∈[1,10]∧j 6=i

Gj (4.1)

2. Second, we train a Bayes based classifier (BasClf ) with data from trainingDatai.

3. Third, we train a Support Vector Machine based classifier (SVMClf ) with data from trainingDatai.

4. Fourth, we train a Random Forest based classifier (RFClf ) with data from trainingDatai.

5. Fifth, we train a Logistic Regression based classifier (RFClf ) with data from trainingDatai.

6. Sixth, for each report in Gi, we predict its reports approval with the resulting Bayes based
classifier (BasClf ), SVM based classifier (SVMClf ), Random Forest based classifier
(RFClf ) and Logistic Regression based classifier (RFClf ) and compare the results against
the actual (correct) status.

7. Finally, we compute accuracy, precision, recall and f1-score for each of the classifiers.

We do not train individual classifiers for different applications, but train a single classifier with
the reports from all the applications. This is because the data from a single application is usually too
small for training, and thus inner-application prediction may be less accurate than inter-application
precision. In other words, we make predictions based on the same resulting classifier for different
applications.

4.5 Subject Applications
We have used a total of 40,000 enhancement reports out of which 10,020 are approved. Some of the
typical applications of which the reports were obtained include Firefox, Thunderbird, SeaMonkey
and Bugzilla itself. The issue reports of these open-source applications are publicly accessible on
Bugzilla. In the rest API call to access the data, the application is specified as the product and
enhancement as the severity type to access enhancement reports of each of the applications.

• SeaMonkey: The Internet application suite for advanced users and the developers. It contains
web browser, email and newsgroup client, HTML editor, IRC chat and web development
tools. SeaMonkey project has 7922 enhancement reports out of which 883 are approved and
7039 are rejected.
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Table 4.4: Ten-fold cross validation (Multinomial Naive Bayes)

Iteration TP FP TN FN Accuracy Precision Recall F1
1 666 138 2697 498 84.09% 82.83% 57.81% 68.09%
2 472 144 3162 251 82.83% 80.54% 65.28% 72.11%
3 348 109 3258 284 90.17% 76.14% 55.06% 63.90%
4 256 44 3341 358 89.94% 85.33% 41.69% 56.01%
5 265 52 3381 301 91.17% 83.59% 46.81% 60.01%
6 556 90 3011 342 89.19% 86.06% 61.91% 72.01%
7 776 107 2825 291 90.04% 87.88% 72.72% 79.58%
8 830 122 2698 349 88.22% 87.18% 70.39% 77.89%
9 1060 139 2484 316 88.62% 88.40% 77.03% 82.32%

10 1692 149 1917 241 90.24% 91.90% 87.53% 89.66%
Average 692.1 106.4 2877.4 323.1 89.25% 84.99% 63.26% 72.53%

• Core: Accessibility in web development to enable increase human accessibility to websites,
even people with limited abilities. Provides information on developing more accessible con-
tent. Total reports from this application are 7223 with 2754 approved reports and 4469 are.

• Firefox: The widely used free and open-source web browser. The browser uses the Gecko
layout engine to render web pages, which implements current web standards. This project
received 6793 enhancement reports, where 896 reports were approved leaving remaining
5897 reports rejected.

• Bugzilla: The issue tracking server software that helps manage software bugs management.
From the Bugzilla project itself, we retrieved 4696 enhancement issue reports where 2197
reports were approved while 2500 reports were rejected.

• Thunderbird: Mozilla Thunderbird is an email and chat client application. We retrieved
3934 enhancement reports from NSS, out of which 398 reports are approved and 3536 are
rejected.

4.6 Results
4.6.1 RQ1: Accuracy of different machine learning algorithms in predicating approval

Multinomial naive Bayes, support vector machine, decision tree and neural networks are among the
widely used supervised machine learning classification algorithms in text due to their competitive
performance [48,60]. The results of applying these classifiers on the enhancements dataset revealed
that the multinomial naive Bayes classifier yields most accurate results on our dataset.

The naive Bayes classifier algorithm is proven effective in many applications including the
binary text classification [19]. Naive Bayes algorithm achieves competitive performance, even
though its basis of conditional independence assumption on which it is based, is not often true.
Zhang [67] argues that the way local dependence of a feature distributes in each class, and how the
local dependencies of all features work together, consistently or inconsistently, dictates whether
the dependencies distribute evenly in classes, or they cancel each other out. The naive Bayes
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Table 4.5: Ten-fold cross validation (Support Vector Machine)

Iteration TP FP TN FN Accuracy Precision Recall F1
1 150 159 2640 984 70.53% 48.00% 15.46% 23.38%
2 96 154 3092 601 80.38% 39.87% 16.87% 23.70%
3 93 157 3159 512 81.97% 36.59% 18.96% 24.97%
4 72 72 3301 522 84.85% 52.27% 14.98% 23.28%
5 66 69 3352 469 86.22% 54.49% 17.11% 26.04%
6 141 100 2983 707 79.35% 61.81% 21.25% 31.62%
7 195 129 2777 807 75.95% 62.65% 24.37% 35.09%
8 237 133 2643 831 74.80% 66.35% 29.58% 40.91%
9 261 152 2427 950 71.35% 68.49% 30.96% 42.64%

10 389 141 1893 1349 61.95% 77.15% 30.21% 43.41%
Average 170.0 126.6 2826.7 773.2 76.73% 56.76% 21.97% 31.50%

evaluated on Spam email detection [66] show that the algorithm is effective in binary classification
problem. These works support our application of naive Bayes for the classification and its optimal
performance on our binary classification dataset. In our dataset, the classifier achieves optimal
performance.

Despite it’s simplicity, the C++ implementation of multinomial naive Bayes5 classifier pro-
duced accurate prediction results on ten-fold validation test. The implementation uses multino-
mial event model and the maximum likelihood estimate with a Laplace smoothing technique for
learning parameters. The classifier mis-classifies few reports in the ten-fold cross validation. The
mis-classifications are mostly false negatives due to the imbalance in dataset.

Support Vector Machine: Support vector machine is another classifier shown effective in
text classification [65]. We trained the support vector machine classifier implementation called
SVM light6. The classifier implementation can process hundred thousands of training vectors and
handle some thousands of support vectors. The parameter c is the trade-off between training error
and the support vector margin. The parameter c value of 20.0 is used in the classifier training. Ta-
ble 4.5 presents the performance of support vector machine classifier on ten-fold cross validation.
Total number of the reports in one set is 4,000. Thus each training dataset has 36,000 reports while
a single test set has 4,000 reports.

The decision tree7 algorithm performed poor in the evaluation. The classifier ran out of memory
on our system, without generating the classification model while trained on the training dataset in
the ten-fold validation. We excluded the decision tree classifier from the evaluation due to its poor
performance.

Random Forest and Logistic Regression: Random forests and logistic regression have been
shown prominent in certain software bug handling studies [2, 55, 61]. For this reason, we assessed
the performance of algorithms with same evaluation metrics and ten-fold cross validation. We
used the same aggregate dataset of all the 35 subject applications reports text modeled as feature

5http://www.openpr.org.cn/index.php/NLP-Toolkit-for-Natural-Language-Processing/43-Naive-Bayes-
Classfier/View-details.html, verified 13/05/2016

6http://svmlight.joachims.org, verified 27/05/2016
7https://github.com/yandongliu/learningjs, verified 20/05/2016
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Table 4.6: Ten-fold cross validation (Random Forests)

Fold TP FP TN FN Accuracy Precision Recall F1-Score
1 370 394 2654 746 72.62% 48.42% 33.15% 39.36%
2 360 430 2618 756 71.51% 45.56% 32.25% 37.77%
3 380 425 2623 736 72.11% 47.20% 34.05% 39.56%
4 359 453 2595 757 70.94% 44.21% 32.16% 37.24%
5 364 421 2627 752 71.82% 46.36% 32.61% 38.29%
6 381 435 2613 735 71.90% 46.69% 34.13% 39.44%
7 361 418 2630 755 71.82% 46.34% 32.34% 38.10%
8 386 451 2597 730 71.63% 46.11% 34.58% 39.52%
9 385 430 2618 731 72.11% 47.23% 34.49% 39.87%

10 358 411 2637 758 71.92% 46.55% 32.07% 37.98%
Average 370.4 426.8 2621.2 745.6 71.84% 46.47% 33.18% 38.71%

Table 4.7: Ten-fold cross validation (Logistic Regression)

Fold TP FP TN FN Accuracy Precision Recall F1-Score
1 423 778 2018 781 61.02% 35.22% 35.13% 35.17%
2 286 775 2468 471 68.85% 26.95% 37.78% 31.46%
3 211 623 2742 424 73.82% 25.29% 33.22% 28.72%
4 106 242 3145 507 81.27% 30.45% 17.29% 22.06%
5 116 246 3181 457 82.42% 32.04% 20.24% 24.81%
6 239 265 2813 683 76.30% 47.42% 25.92% 33.52%
7 294 313 2630 763 73.10% 48.43% 27.81% 35.33%
8 301 274 2540 885 71.02% 52.34% 25.37% 34.18%
9 354 254 2397 995 68.77% 58.22% 26.24% 36.17%

10 527 390 1753 1330 57.00% 57.47% 28.37% 37.99%
Average 285.7 416.0 2568.7 729.6 71.36% 41.38% 27.74% 31.94%

vectors. The results of applying these algorithms on our dataset were however, not as encouraging
compared to Bayes classification model. Random forest classifier exploits ensemble learning tech-
nique. The standard implementation from sklearn.ensemble module for RandomForestClassifier
was evaluated for cross validation scores. Table 4.6 shows the performance of random forest clas-
sifier. The average for accuracy, precision, recall and f1-score are respectively 58.07%, 58.50%,
70.18% and 63.81% over ten folds cross validation.

Table 4.7 summarizes the performance of logistic regression classifier from sklearn library.
The algorithm outputs an average accuracy of 71.36%. However, it does not performs optimally
in terms of precision, recall and f1-score which on average are respectively, 41.38%, 27.74% and
31.94% over ten folds cross validation.

To investigate whether there is essential difference between the accuracy of the Bayes based
approach and the accuracy of alternative classification techniques on the corresponding dataset, we
perform ANOVA analysis on their resulting accuracy in ten-fold evaluation (ten different accuracy
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Table 4.8: ANOVA analysis on accuracy
MNB vs SVM

Source of Variation SS df MS F P-value F critical
Between Groups 0.070590962 1 0.070590962 22.22338 0.000172997 4.413873419
Within Groups 0.057175686 18 0.003176427

Total 0.127766648 19

MNB vs RF
Source of Variation SS df MS F P-value F critical

Between Groups 0.140767420 1 0.140767420 317.9988106 6.90912E-13 4.413873419
Within Groups 0.007967997 18 0.000442667

Total 0.148735417 19

MNB vs LR
Source of Variation SS df MS F P-value F critical

Between Groups 0.1489538 1 0.1489538 40.73390441 5.20036E-06 4.413873419
Within Groups 0.065821542 18 0.003656752

Total 0.214775342 19
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Figure 4.1: Accuracy of the approach
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Figure 4.2: Precision of the approach

for each of the techniques). The results of ANOVA analysis are present in table 4.8. From this
table, we observe that for each of the comparison present in the table, F > Fcric and P − value <
(alpha = 0.05). These results suggest that the factor (different classification techniques) did
cause significant difference in resulting accuracy, and the multinomial naive Bayes based approach
results in best accuracy.

Figure 4.1, Figure 4.2, Figure 4.3 and Figure 4.4 visually compare the performance of support
vector machine, random forests, logistic regression and multinomial naive Bayes classifiers in
terms of accuracy, precision, recall and f1-score performance metrics respectively. The graphs
reveal that the multinomial naive Bayes implementation outperforms the compared algorithms in
all performance metrics.

The distribution of accuracy over ten-fold cross validation for multinomial naive Bayes, support
vector machine, random forests and logistic regression is presented in Figure 4.5. A bean-plot plots
the beans, one bean per group to compare the distributions of different groups. A bean is a one-
dimensional scatter plot consisting of the data distribution as a density shape. The accuracy of
individual folds are represented as horizontal lines within the bean whereas the average accuracy
is represented as the longer line across the bean. Shape of the bean is the density, and the longer
bold line represents the average accuracy of each classifier over ten-fold cross validation.

As observable in Figure 4.5, the multinomial naive Bayes classifier exhibits a high accuracy
and a small deviation in the values through the different folds of ten-fold validation. Random
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Figure 4.3: Recall of the approach
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Figure 4.4: F1-Score of the approach
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Figure 4.5: Accuracy distribution of the approach
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Figure 4.6: Effect of scaling the class probability on the performance

forest classifier shows consistent but lower accuracy as compared to multinomial naive Bayes.
Support vector machine classifier and logistic regression does not show consistency in accuracy
across different folds of ten-fold cross validation and a relatively lower performance as compared
to the multinomial naive Bayes classifier. The bean-plot suggests that the lowest accuracy of
multinomial naive Bayes is still comparable to the highest accuracy of support vector machine and
logistic regression in the ten-fold cross validation.

We conclude the preceding analysis that multinomial naive Bayes classifier outperforms other
classification models in the approval prediction of enhancement reports. One of the possible rea-
sons is that the Bayes is an effective model for text classification and the proposed approach is
completely based on the text. Another possible reason is that the naive Bayes classifier is more
effective for binary classification than multi-class classification [42], and the proposed approach
classifies the reports into two classes only.

Neural network and deep learning based classification approaches have shown a superior per-
formance in many applications, but they usually require a large number of training dataset. Apart
from that, there are a large number of parameters that need to be optimally adjusted for such al-
gorithms to result in higher performance. Neural network may not have outperformed the Bayes
based approach on dataset due to these reasons.

The relatively lower recall rate in multinomial naive Bayes is a result of more reports being
misclassified as rejected. Applying an scaling factor s to the posterior probability of approve
class to increase its probability can be used to adjust the precision and recall of the approach. A
developer can choose to have either higher precision or recall for the reports depending on which
is more important to the him, by scaling the class weight accordingly. With the scaling factor,
posterior probability becomes

P (approve) = s ∗ P (approve) (4.2)
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Figure 4.6 shows the effect of applying the scaling factor s values between 1.001 to 1.019
with step size of 0.003. The average results of the ten-fold validation on Bayes based approach
show that the precision improves as a result of applying more weight to the approve class posterior
probability due to less number of false negative or reject classifications. Thus there is a trade-off
between precision and recall with the scaling factor value.

Comparing Against Deep Learning Algorithms: To get more optimal performance, we ap-
plied Deep Belief Networks (DBN) for deep learning and compared it with the Multi-Layer Per-
ceptron (MLP)8, a neural network algorithm. The deep learning algorithms require compact rep-
resentation of the data for better performance. Le and Mikolov [30] proposed an unsupervised
algorithm called paragraph vector that generates fixed length feature representation from text re-
ports of varying lengths. We applied the paragraph2vec implementation [33] of the algorithm to
convert the enhancement reports into feature vectors. Since the algorithm allows to generate the
feature vectors with any number of dimensions, we tried and found that 100-dimensional feature
vectors are applicable without any performance reduction.

The dataset we used for deep learning contains set of pairs (yi, xi), where xi is the compact
representation of the report text (100-dimensions vector) and yi is the label (0 or 1) associated with
the report. We divide the dataset into training and validation sets. The dataset is divided into ten
parts. One part forms the validation set while the remaining parts form the training set.

The deep belief network (DBN) performed poor with the validation error 77.87% on our dataset
of 40,000 reports. Furthermore, the performance of the algorithm was not consistently improving
as we tried different sized datasets. The classifier takes relatively higher training and classification
time of 187.8 and 1.021 seconds respectively.

We built multilayer perceptron (MLP) with an input layer of 100-dimensions, a hidden layer
of 1,000 sigmoids, and a logistic regression classifier layer which outputs one of the two classes.
The first input layer takes the reports feature vectors as input and forwards it to the hidden layer
for the model parameters optimization. Finally the output logistic regression layer uses the hidden
layer activations for final binary classification. It turned out during evaluations that with the given
dataset, the performance of the deep learning approach is lower than the multinomial naive Bayes
based approach. Since deep learning approaches usually require large sized dataset to get better
performance, we tested different sized subsets of the our original corpus to observe if the results
improve with increasing dataset size. The MLP algorithm has shown consistent improvement when
we applied increasing size of the dataset.

Table 4.9 shows that the validation accuracy of MLP gradually increases with the increasing
dataset size. Deep Belief Networks’ performance, however, does not exhibit consistency with the
increasing dataset size. We extrapolated the validation accuracy of MLP for larger dataset size
using the forecast function in R. The forecast method uses ARIMA modeling to extrapolate the
values. Forecast is a generic function for forecasting from time series models. We used 30 periods
for forecasting 30 data-points with intervals of 5,000 records.

The result of extrapolation in Figure 4.7 (the blue dotted line is the actual dataset accuracy,
red line is extrapolated accuracy) shows that for a dataset of 140,000 reports, the accuracy of MLP
equals the accuracy of the Bayes based approach. With the dataset size doubled to 280,000 reports,
the extrapolation suggests that the results of the neural networks based approach will be 94.19%
accurate. This trend of performance improvement shows that if the dataset size is sufficiently large,

8http://deeplearning.net/, verified 10/08/2016
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Table 4.9: Multi-layer neural network performance improvement with respect to dataset size

Dataset Size Error Rate
10000 28.50%
15000 25.46%
20000 25.45%
25000 22.76%
30000 20.56%
35000 20.45%
40000 18.92%
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Figure 4.7: Validation accuracy extrapolation for neural network based approach
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Table 4.10: Multinomial naive Bayes ten-fold cross validation performance with re-sampling

Iteration TP FP TN FN Accuracy Precision Recall F1
1 961 346 2449 243 85.27% 73.52% 79.81% 76.54
2 626 339 2903 131 88.24% 64.87% 82.69% 72.70
3 489 322 3043 145 88.32% 60.29% 77.12% 67.68
4 510 364 3023 102 88.34% 58.35% 83.33% 68.64
5 513 575 2851 60 84.12% 47.15% 89.52% 61.77
6 871 785 2292 51 79.09% 52.59% 94.46% 67.57
7 1021 931 2011 36 75.81% 52.30% 96.59% 67.86
8 1157 939 1875 28 75.81% 55.20% 97.63% 70.52
9 1320 1160 1491 28 70.29% 53.22% 97.92% 68.96

10 1813 708 1435 43 81.22% 71.91% 97.68% 82.84
Average 928.1 646.9 2337.3 86.7 81.66% 58.94% 89.68% 70.51%

the deep learning technique may outperform the multinomial Naive Bayes based approach.
Although a large sized training data may be difficult to obtain, but based on the improvement

trend proportional to increase in dataset size, we suggest to use the neural network based approach
for more accurate prediction of the enhancement reports when large labeled dataset is available for
training.

4.6.2 RQ2: Influence of re-sampling

There are different ways of re-sampling including over-sampling the underrepresented class under-
sampling the overrepresented class, or sometimes changing the classifier threshold for one of the
classes to give more weight to under-represented class or less weight to over-represented class.
We performed re-sampling of the dataset by under-sampling the reject class since large number of
reports are rejected in our dataset. The resulting balanced dataset with proportionate approved and
rejected reports is compared in evaluation with the original imbalanced dataset.

To determine the influence of re-sampling, we evaluate the Bayes based approach on the bal-
anced dataset. Similar reports drawing method is used as with the original dataset from all the
subject applications. Since our dataset is imbalanced with more rejected reports, we performed
under-sampling of rejected class to equal the number to approved reports. In ten-fold cross vali-
dation of the classifiers, the training fold was subjected to under-sampling with balanced number
of reports in each fold, while the testing fold was used unchanged. For instance, in our dataset of
40,000 reports, 36,000 reports were drawn as training set in each fold, and under-sampled to have
equal number of approve and reject reports. Thus each training fold contained around double the
number of approve reports, half approved, half reject. The testing fold dataset of 4,000 reports
was used unchanged to mimic the real testing condition of more reject reports in the issue tracking
system.

The ten-fold cross validation results of multinomial naive Bayes based approach with re-
sampled reports dataset are presented in Table 4.10. Each row shows result of the corresponding
fold number in ten-fold cross validation. The output of a fold are total true positive, true negative,
false positive and false negative predictions of the fold, which are used to calculate the accuracy,
precision, recall and f1-score of the fold. The average accuracy of the approach is 81.66%, with
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Table 4.11: Average performance with and without re-sampling

Metrics MNB SVM RF LR
Accuracy(%) 81.66 (89.25) 76.70 (76.73) 55.43 (71.84) 50.31 (71.36)
Precision(%) 58.94 (84.99) 57.52 (56.76) 29.34 (46.47) 28.13 (41.38)

Recall(%) 89.68 (63.26) 21.51 (21.97) 56.37 (33.18) 63.23 (27.74)
F1-Score(%) 70.51 (72.53) 31.31 (31.50) 37.83 (38.71) 38.03 (31.94)

precision, recall and f1-score being 58.94%, 89.68% and 70.51% respectively.
Table 4.11 summarizes the average ten-fold cross validation performance for accuracy, preci-

sion, recall and f1-score of the classifiers with under-sampled dataset. Each cell in the table shows
performance on balanced dataset along-with corresponding value in parenthesis for the full imbal-
anced dataset. The results suggest that under-sampling the enhancements corpus does not improve
accuracy of the approval prediction. In many cases, re-sampling is a useful technique to deal with
the over-fitting problem due to skewed data. However, in our case, it does not show improvement.
One possible reason is that the chosen re-sampling technique is not suitable in our case. Replacing
it with other re-sampling techniques may improve the accuracy.

4.6.3 RQ3: Positive and negative words

Lamkanfi et al. [26] investigated the problem of predicting the bug reports as non–severe or severe
using naive Bayes classifier. The authors calculated the probability of the words in both severe and
non-severe bug reports and found that the most appearing significant words appear across different
applications. Considering this finding, we try to identify some words that are more likely to appear
in each of the enhancement reports classes.

Table 4.12 presents the probabilities of some of the words in the approved reports. Words
accordance, exponent and patch for instance, have a positive or constructive sense and are mostly
associated with the feature enhancements to software applications. So such keywords support the
argument of the enhancement and improve the quality of the report. The positive words should be
used to clearly specify the enhancement with constructive suggestions.

Words arena, slot and patch can clearly specify which part of the software should be improved.
The enhancement reporter has clear idea of the software and the enhancement which makes it
highly possible that he suggests high quality enhancement. So it can be asserted that such words
improve the quality of the enhancement report, giving the developer a better understanding of the
proposed enhancement, thus increasing the likelihood of enhancement approval.

We calculated the significance of each word feature affecting the rejection likelihood. The
words likelihood of rejection is calculated in general for all applications without calculating the
likelihood for each individual application. TF/IDF is a useful technique to measure the significance
of the words in a document. We sorted the words with highest occurrences in the enhancement
reports according to TF/IDF. We however, take all the reports belonging to the same class as a
document to calculate term frequency (TF) of the word and the entire set of reports in which
the words appear to calculate inverse document frequency (IDF). Sorting the words based on the
probability with this technique suggests that if the likelihood of a class is high, the word has
occurred in most of the reports of that class and thus affects the likelihood of that particular class.
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Table 4.12: Some words with highest approve probability Papprove

Word Likelihood of approval
accordance 94.06%

bone 93.75%
exponent 88.23%

computation 83.33%
arena 80.00%
sweep 80.00%

slot 79.41%
deprecate 75.00%

patch 69.82%
module 54.87%

Table 4.13: Some words with highest reject probability Preject

Word Likelihood of rejection
meaningless 87.50%

stupid 92.30%
awesome 90.37%
offensive 90.00%
receive 89.90%

reproduce 89.24%
crap 87.50%

funny 81.81%
monster 80.00%
suspect 76.19%

Equation 4.3 depicts the formula to calculate the reject likelihood of word.

P (wi, reject) =
count(dreject, wi)

count(dtotal, wi)
(4.3)

Where P (wi, reject) is the reject probability of word wi, count(dreject, wi) is the number of re-
jected reports in which the word appears, and count(dtotal, wi) is the total number of reports in
which the word appears. The approve probability is similarly calculated as:

P (wi, approve) =
count(dapprove, wi)

count(dtotal, wi)
(4.4)

Where P (wi, approve) is the approve probability of word wi, count(dreject, wi) is the number of
rejected reports in which the word appears, and count(dtotal, wi) is the total number of reports in
which the word appears.

Table 4.13 lists the words that are frequently associated with rejected enhancement reports.
Most of such words are negative revealing the anger and satire of the reporters. It is often difficult
for reports with such feelings to specify the enhance report clearly, let alone providing constructive
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Table 4.14: Average training and testing time of the classifiers in seconds

Classifier Training Time Testing Time
Multinomial Naive Bayes 0.3649 0.0798
Support Vector Machine 0.2483 0.0364

Random Forest 1.6922 0.0143
Logistic Regression 0.9072 0.0009

MLP 9.66 0.617
DBN 187.8 1.021

suggestions. Consequently, such reports are more likely to be rejected. It is not to say that all the
reports containing such words are doomed to rejection, but that they are more likely to be rejected
than those described in a more constructive way.

Although such words may have negative effect on approval of the report, they do not however
always lead to rejection of the enhancement. Many of the reports containing such words are not
approved, but sometime reports containing these words are approved. If needed, these words
should be used carefully in more constructive ways to reduce the chances of rejection. Thus a
report is not always rejected by just having one or two of such words, but frequent use of many of
these words may lead to rejection.

Generally the words contributing towards rejection have higher likelihood probability than the
words of approval likelihood. This is due to the fact that most of the enhancement reports of the
applications obtained from Bugzilla, were rejected.

4.6.4 RQ4: Time complexity of the approach

We calculate the time complexity of the approach by measuring enhancement reports lemmatiza-
tion time, and the training and testing times of the classifiers. For lemmatization, we measured
and averaged the time of five lemmatization requests of the same report. The time is measured by
initializing the timer just before the call to the lemmatization REST API server and stopping it just
after the server response is received. The total time is calculated as the difference between the start
and stop time interval. The average time of the lemmatization over five iterations on our system is
2.18 seconds which is a rough estimate of the actual lemmatization time since the lemmatization
API is an external program hosted online, so we only estimate the process time. It is important to
note that the average time for lemmatization is the combination of communication time (lemmati-
zation request to the server and the response time) and the time of the text lemmatization process.
The communication time depends on the underlying network system, and is an important factor as
it affects the total execution time.

To measure the execution time of the classifier training and prediction, we calculated the aver-
age execution time of five trials on one fold for training and prediction of the classifiers. In each
trial, we used the same sized dataset of the reports. The average time is calculated in seconds scale
on our system with training dataset of 36,000 reports and test dataset of 4,000 reports. The results
are depicted in the Table 4.14.

The time calculations for the neural network based classifiers were performed with the fixed
parameters. The training time is much higher for neural networks, and significantly higher in case
of DBN as compared to MLP.
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In case of the training to generate the classifier, multinomial naive Bayes algorithm is most ef-
ficient compared to the other classifiers. While the logistic regression implementation is relatively
fast in case of classification time.

The time and space complexity of naive Bayes classifier is linear to the number of training
reports and the number of features. Theoretically, the training time complexity for the naive Bayes
classifier is given by

O(|D|Ld + |C||V |)) (4.5)

Where Ld is the average length of report vector, |D| is the number of reports used in training, |C|
is the number of distinct classes of the reports and |V | is the feature vectors size. The testing time
for the naive Bayes classifier is given by

O(|C|Lt) (4.6)

Where Lt is the average length of a test report vector and |C| is the total number of distinct classes
to classify the reports. The naive Bayes classifier is time efficient that learns with one pass of
counting over the data and tests linearly in the number of attributes.

4.7 Threats to Validity
4.7.1 Construct Validity

First threat to construct validity is the accuracy of the labeled reports. We assume the reports are
correctly classified by the developers which may not be correct for all the reports. This is possible
due to human error. Hence our training and testing data may have a few inaccuracies. We only
used the reports that are resolved and closed to minimize this inaccuracy.

Second threat to construct validity results from the extrapolation of the deep learning based
approach, which may not be accurate. Since deep learning algorithms usually require a large
training dataset for better performance, but we have limited data, so we extrapolate the results to
observe expected performance on more data and it is possible that the actual performance may not
be as good.

4.7.2 Internal Validity

First threat to the internal validity is that the lemmatization process of the enhancement reports
may be inaccurate. This inaccuracy is possible because a natural language tends to be ambiguous
and the words change over time. This may lead to limitation and the problem for lemmatization
programs. To counter this threat, we used one of the well known and standard lemmatization
API and cross-checked sample lemmatization outcomes of the API with Stanford NLP library to
validate the results.

Second threat to internal validity is that the deep learning algorithms have a number of pa-
rameters to be adjusted and performance is influenced by the settings of such parameters. These
parameters include the initial weights, the learning rate, activation function, number of layers in
the network, and so on. Thus it is possible that the neural network algorithms underperformed due
to non-optimal parameters.

The third threat to internal validity comes from the approach being limited to only two out-
comes of resolution status. As we treat a report as approved if its resolution is fixed, and reject
otherwise while different types of reject classes are not considered. An important resolution for
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enhancements is duplicate report. Although a requested feature may be good enough but be dupli-
cate of another enhancement, thus be rejected. We do not specifically include this problem in our
approach, since a number of duplicate detection techniques have been proposed, and one of such
approaches can first be used to rule out the duplicate issue.

4.7.3 External Validity

First threat to validity is the language of the enhancement reports. We evaluated the approach on
English based text of the reports. Since our approach is based on textual features of an enhancement
request on which a classifier model is trained, the performance may not be as effective in case of
the reports written in other languages, for instance in Chinese.

Second threat to external valid is the re-sampling technique used. Since there are different data
balancing techniques available, the performance can be affected by the technique used. We chose
under-sampling as it is a standard re-sampling technique that limits itself within existing corpus
and does not require generating or fabricating new data. The dataset size is however, reduced with
under-sampling that can affect the performance. A different re-sampling method may have better
results.

The third threat is that the evaluation is performed on the applications from Bugzilla issue track-
ing system. Unlike Jira, Bugzilla is a well known open-source system that provides API to access
the issue reports data. We thus used Bugzilla to extract the enhancement reports. Bugzilla allows to
access a limited number of open-source applications data. We therefore examined the performance
of our approach with a limited number of reports from open-source applications. The domain
of these applications is mostly the Internet and desktop applications. Therefore the approach may
possibly not perform well on other domains like smart-phone applications. The evaluation on more
applications in different domains should be conducted to reinforce the conclusions.

4.8 Summary
In this chapter, the evaluation process for the proposed approach is presented. The approach was
evaluated on 35 open-source projects from Bugzilla based on accuracy, precision, recall and f1-
score. Bayes based approach is further compared with the other classifiers with and without re-
sampling of the dataset. The negative words are discussed that may not be convey constructive
suggestions and thus affect the approval of an enhancement reports. The training and testing time
for the difference classification methods used in the evaluation show that the Bayes based approach
is both effective and efficient. Finally some of the threats to validity are discussed that may affect
the performance of the approach.
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Chapter 5
CONCLUSION AND FUTURE WORK

In this study, we propose a supervised machine learning based approach to predict whether a soft-
ware enhancement request would be approved or rejected. The approach builds a classifier from the
history data of open-source projects from Bugzilla. The approach preprocesses the enhancement
requests description, converts into feature vectors and uses the resolution status of the correspond-
ing enhancement report feature vectors to train a Bayes based classifier. A test dataset without
resolution status or class is fed in the classifier to test it’s approval prediction performance. The
valuation of the approach resulted a prediction accuracy of 89.25% over ten-fold cross validation.

A majority of enhancement reports of the software applications on Bugzilla are not approved
and the manual evaluation of these reports by the developer wastes much productive time. The
approach in this paper shows that it is possible to automatically classify the enhancement reports
as approved or rejected.

To train a supervised classifier for issue handling tasks like approval prediction or triage, a
number of labeled issue reports need to be collected. The history data may not always be accurate
that may affect the classification model. The classified bug reports data can be insufficient or
even incorrect as some of bug reports may not be clearly described. Moreover, a developer may
mistakenly assign incorrect labels to the bug reports. If there are a significant number of such
incorrectly labeled data, it would affect the quality of the training data and hence the resulting
classification model. We chose to extract the confirmed issue reports which have already been
resolved and closed after confirmation.

A feature enhancement may be suggested which is reasonable and likely to be approved that
uses constructive suggestions, but a similar enhancement has been approved just in time of the
suggestion or the suggester missed similar enhancement request previously filed, leading this report
as duplicate. To this end, one of the numerous duplicate issue report detection technique can be
applied to rule out a similar request before filing a new enhancement report. Extensive studies have
been done to retrieve similar or duplicate issue reports.

We evaluated the performance of the approach on enhancement reports of open-source applica-
tions acquired from Bugzilla. We conclude that the prediction accuracy of the approach is optimal
given sufficient training data of two classes of enhancement reports, with average precision and
recall 84.99% and 63.26% respectively.

5.1 Study Limitations
A limitation of the proposed approach is that it is merely based on the text description of an
enhancement report. However, other factors like available resources, business concerns, budget
and reporters may also influence the approval decision. In future, incorporating such factor may
improve the performance of the approach.

The second limitation of the proposed approach is that it classifies the enhancement reports
into only two groups, the approved and non-approved. Actually, the enhancement reports have a
number of possible status like approved, rejected, duplicate and invalid. We take all reports that
are not approved as non-approved and make no further classifications. We make such a binary
classification instead of multi-class classification because of the following reasons:
First, the major purpose of the approach is to recommend those reports that are likely to be ap-
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proved and ignore others. Consequently, classifying the reports into approved and non-approved
is enough for the task.
Second, reducing the number of the classes helps improve the classification accuracy.

5.2 Conclusion
We observed relatively low performance in certain test cases and observe that some words affect
the performance. Particularly important to the performance is a weak point in the multinomial
naive Bayes classifier that one or more words appearing in only one class in the training dataset
but occurring in the other class in test dataset reduce the overall likelihood of the actual class. A
smoothing factor is applied to minimize the effect of such words. Furthermore, the imbalanced na-
ture of the dataset also affects the classifier which produces biased results towards more occurring
reject class.

This study enables to implement an efficient automated enhancement classification method.
The approach contributes to the current research trends of automating the software issue reports
classification. If prediction is rejected, the report may have used the words which that did not
express the enhancement requirement clearly, reducing the chances of approval. The reporter may
change the keywords and improve the report with constructive suggestions to make it more likely to
be approved. Our prediction approach can therefore help the reporter before the report is actually
submitted so there will be more chances of approval. Furthermore, it can save the time of the
developer or maintainer by getting more likely to be approved enhancement reports.

The increase in dataset size reduces the error rate in deep learning approach. We therefore
conclude that the deep learning approach may outperform the Bayes based approach when the
dataset is sufficiently large.

Apart from the application in Bugzilla, the study can be applied on the other issue tracking sys-
tems that use a similar process of issues cycle to track the issues. There may be minor differences
in the names of different attributes of an enhancement report, which can be taken into account
while using the approach with other issue tracking systems.

The proposed approach limited to classifying the reports into two classes. The multinomial
naive Bayes classifier used in the approach has shown significantly accurate results. Since the
approach is only optimal in classifying reports into two classes, the problem of predicting the exact
resolution status of the report rejection is still unsolved. The rejected reports on a typical issue
tracking system have many values of resolution for instance invalid or expired. A more advanced
approach in the enhancement report prediction can predict the resolution to cover other resolution
types. The approach may be extended to predict duplicate enhancement report by measuring the
similarity to the history reports, using additional field of the product name. An advanced approach
may include the features or words suggestions for improving the enhancement report so as to
increase chances of the report approval.
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Appendix A SUBJECT APPLICATIONS

A.1 Open-source applications
The 35 subject application products for which the enhancement reports were extracted from Bugzilla
are shown in Table A.1.

Table A.1: The open-source projects data used in evaluation

Application Total Reports Approved Rejected
SeaMonkey 7922 883 7039

Core 7223 2754 4469
Firefox 6793 896 5897
Bugzilla 4696 2197 2500

Thunderbird 3934 398 3536
MailNews Core 2050 376 1674

Toolkit 1678 380 1298
Calendar 1505 439 1066

Camino Graveyard 1168 344 824
Core Graveyard 1026 259 767

NSS 625 502 123
bugzilla.mozilla.org 500 264 236
Other Applications 472 284 188

mozilla.org 359 187 172
www.mozilla.org 276 116 160

Webtools 217 142 75
Webtools Graveyard 209 85 124

mozilla.org Graveyard 159 89 70
Mozilla Localizations 151 71 80

NSPR 108 79 29
Developer Documentation 102 74 28

Rhino 98 85 13
Marketing 76 41 35

Tech Evangelism Graveyard 51 12 39
CCK 40 19 21

Documentation 38 13 25
Directory 37 26 11

JSS 25 22 3
Grendel 21 9 12

Mozilla Localizations Graveyard 19 17 2
MailNews Core Graveyard 17 3 14

Tech Evangelism 14 3 11
MozillaClassic 10 2 8

Derivatives 5 1 4
addons.mozilla.org 1 0 1
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Appendix B IMPLEMENTATION

The source code for the approach and preprocessing is written in Python and NodeJS. The first
Section B.1 details how the enhancement reports of the open source are acquired from Bugzilla
issue tracking system using its REST API. The second Section B.2 lists implementation of the re-
ports preprocessing steps. Section B.3 shows listing for modeling the reports into Term Frequency
based feature vector model.

B.1 Enhancement Reports Data
The raw reports of the open source applications are acquired from Bugzilla issue tracking system.
The reports are acquired in two phases; in the first phase, the enhancement reports are extracted
from Bugzilla API. In the second phase, using the report id, the enhancements detailed description
text is obtained using the API.

All the reports are processed the same way without considering the specifics of the corre-
sponding software application of the report, for instance the source code language, the type of
application, and other parameters are not put in the equation. The mean number of words in
the enhancement reports of all the projects are 30. The average number of words for the reports
summay is 6. Some of the important components returns by Bugzilla include the followings:
id, url, summary, platform, priority, depends_on, dupe_of, is_open, resolution, severity,
product

B.1.1 Reports Acquisition

1 var rest = require(’restler’);
2 var fs = require(’fs’);
3
4 var save_to_file = function(reports_data){
5 fs.writeFile("./bugsData.txt", JSON.stringify(reports_data), function(err) {
6 if(err) {
7 console.log(err);
8 return -1;
9 }

10 });
11 }
12
13 var get_product_enhancements = function(product = ’Firefox’){
14 var URL = ’https://bugzilla.mozilla.org/rest/bug?severity=enhancement&

product=’+product+’&include_fields=id,severity,summary,status,resolution
,product’;

15 console.log("Retrieving reports from Bugzilla for " + product);
16 rest.get(URL).on(’complete’, function(data) {
17 console.log(’Retrieved data from Bugzilla server for ’ + product );
18 save_to_file(data);
19 });
20 }
21
22 var get_all_enhancements = function(){
23 var URL = ’https://bugzilla.mozilla.org/rest/bug?severity=enhancement&

include_fields=id,severity,summary,status,resolution,product’;
24 console.log("Retrieving reports from Bugzilla for all the projects");
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25 rest.get(URL).on(’complete’, function(data) {
26 save_to_file(reports_data);
27 });
28 }
29
30 var get_report_description = function(issue_id = 155482) {
31 var URL = ’https://bugzilla.mozilla.org/rest/bug/’+issue_id+’/comment’;
32 rest.get(URL).on(’complete’, function(data) {
33 console.log("Retrieved desciption for the enhancement with id = " +

issue_id);
34 });
35 }

This python code fetches the enhancement reports for the specified list of open-source products
from Bugzilla. It uses the REST API from Bugzilla specifying the severity field as enhancement.
The code then loops through all the subject applications and fetches enhancements for each of the
application.

The next step is to acquire the description of each enhancement report. The listing below uses
the id of each enhancement filed to fetch its detailed description.

1
2 URL = ’https://bugzilla.mozilla.org/rest/bug/’
3
4 def fetchEnhancementIds():
5 select_query ="SELECT id FROM Enhancements.bug_details WHERE isnull(comment)

AND resolution!=\"\""
6 enhanses = db.query(select_query)
7 for enh in enhanses:
8 ids.append(str(enh[’id’]))
9

10 fetchEnhancementIds()
11
12 def insertComments(ids):
13 for eid in ids:
14 r = requests.get(URL+eid+"/comment")
15 jObj = json.loads(r.text)
16 comment = str( re.sub(r’[^\x00-\x7F]+’,’ ’, jObj[’bugs’][eid][’comments’

][0][’text’] )).replace(’\’’,’’).replace(’\"’,’’)
17
18 query = "UPDATE Enhancements.bug_details SET comment=’"+json.dumps(comment)+"’

WHERE id=" + eid
19 dbResult = db.insert(query)
20 if dbResult == -1:
21 errorEnhancementsComments.append(eid)

B.2 Reports Data Preprocessing
The raw reports are preprocessed to remove non-word tokens from their text. The reports are
further lemmatized which results in dimension reduction. The code below makes use of an online
lemmatization API to lemmatize the enhancement reports text.

1 import nltk, re, unirest, json
2 from nltk.stem import WordNetLemmatizer
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3 from database import *
4 from utilities import *
5
6 lemmatizer = WordNetLemmatizer()
7 errorLemmaComments = []
8
9 db = Database()

10 url="https://twinword-lemmatizer1.p.mashape.com/extract/"
11
12 def insertFeatures(words):
13 print ’now inserting lemma words - ’ + str(len(words))
14 for word in words:
15 query = "INSERT INTO features (word) VALUES(\’"+ word +"\’)"
16 dbResult = db.insert(query)
17
18 def lemmatizeREST(txt):
19 args = {
20 ’X-Mashape-Key’: ’58kqT228vBmshu9OhloHiw2YmiMXp1YSZryjsnLAlqOUAiVetU’,
21 ’Content-Type’: ’application/x-www-form-urlencoded’,
22 ’Accept’: ’application/json’
23 }
24 comment_lemma = ""
25 try:
26 response = unirest.post(url, headers=args, params={’text’: txt})
27 if hasattr(response.body, "lemma"):
28 jObj = json.dumps(response.body[’lemma’], skipkeys=True)
29 json_ob=json.loads( jObj)
30 for k in json_ob:
31 comment_lemma += k + " "
32 else:
33 comment_lemma = re.sub(’[0-9!"#$%&()*+,-./:;<=>?@[\\]^_‘{|}~]’,’ ’, txt.

lower())
34 except IOError as ioerr:
35 print ioerr
36
37 return comment_lemma
38
39 def lemmatize(str):
40 lemmaWords = ’’
41 words = nltk.word_tokenize( re.sub(’[0-9!"#$%&()*+,-./:;<=>?@[\\]^_‘{|}~]’,

’ ’, str.lower() ) )
42 for word in words:
43 lemmaWords += lemmatizer.lemmatize(word, pos=’v’) + ’ ’
44 return lemmaWords
45
46 def fetchComments():
47 select_query ="SELECT id, comment, resolution FROM Enhancements.bug_details;

"
48 enhanses = db.query(select_query)
49 comment = ""
50 lemmaComment = ""
51 index = 1
52 for enh in enhanses:
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53 comments = str(enh[’comment’]).split("Additional Details :")
54 if len(comments) > 1:
55 comment = comments[1].replace("\n",’ ’)
56 else:
57 comment = comments[0].replace("\n",’ ’)
58
59 print ’\n\nlematizing report ’ + str(enh[’id’])
60 lemmaComment = lemmatizeREST(comment)
61 index+=1;
62
63 fetchComments()

B.3 Feature Vector Modeling - TF Vector Generation
The feature vector models are used to represent the textual enhancement reports.

1
2 var calculateVector = function(resolution, status, wordsArr){
3 var vector=status;
4 var wordTF={};
5 var found = false, isFirst = true, isLast = false;
6 var featureCount = 0;
7 for (var i = 0; i < allWords.length; i++) {
8 for (var arrI = 0; arrI< wordsArr.length; arrI++) {
9 allWords[wordsArr[arrI]].probability_difference);

10 if(wordsArr[arrI] == allWords[i].word){
11 featureCount++;
12 if(!wordTF[(i+1)+""]){
13 wordTF[(i+1)+""]=1;
14 }
15 else{
16 wordTF[(i+1)+""]+=1;
17 }
18
19 }
20 }
21
22 for(var key in wordTF) {
23 vector+=" " + key + ":"+wordTF[key]+".0";
24 }
25
26 return vector;
27 }
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Appendix C PERFORMANCE EVALUATION

C.1 Performance Test Code
The Python code below uses the test file class labels and compares it with the output labels pre-
dicted by the classifiers to evaluate accuracy, precision and recall measures. The code assumes
ten-fold cross validation for evaluation and thus ten equal sized test and prediction output files.

1 testfilePath = ’/path/to/test/files/’
2 predictionfilePath = ’path/to/prediction/files/’
3 tTP=0; tTN=0; tFP=0; tFN=0;
4
5 def getPredDiff(test, predict):
6 tp=0; tn=0; fp=0; fn=0;
7 for i in range(len(test)):
8 if test[i][0] == ’1’ and test[i][0] == predict[i][0]:
9 tp+=1

10 if test[i][0] == ’2’ and test[i][0] == predict[i][0]:
11 tn+=1
12 if test[i][0] == ’1’ and test[i][0] != predict[i][0]:
13 fp+=1
14 if test[i][0] == ’2’ and test[i][0] != predict[i][0]:
15 fn+=1
16
17 return (tp, tn, fp, fn)
18
19 def getPerfParams(tp, tn, fp, fn):
20 accuracy=float(tp+tn)/(tp+fp+tn+fn)
21 precision=float(tp)/(tp+fp)
22 recall=float(tp)/(tp+fn)
23 return (accuracy, precision, recall)
24
25 for fold in range(1, 10):
26 files = [testfilePath+"/testset"+str(fold)+".samp", predictionfilePath+"/

nbresult"+str(fold)+".out"];
27 testf = open(files[0], ’r’)
28 predictf = open(files[1], ’r’)
29 test = open(files[0], ’r’).readlines()
30 predict = open(files[1], ’r’).readlines()
31 testf.close()
32 predictf.close()
33
34 print ’\textbackslash\{\}n\textbackslash\{\}nfold = ’ + str(fold) + ’\

textbackslash\{\}ntp, tn, fp, fn’
35 tp, tn, fp, fn = getPredDiff(test, predict)
36 print(tp, tn, fp, fn )
37 print ’\textbackslash\{\}nAccuracy, Precision, Recall’
38 print (getPerfParams(tp, tn, fp, fn))
39 tTP+=tp; tTN+=tn; tFP+=fp; tFN+=fn;
40
41 print (’\textbackslash\{\}n Average Accuracy, Precision, Recall’)
42 print (getPerfParams(tTP, tTN, tFP, tFN))
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